Contents

		Page
1	Originals	244
	2016 Informal Tourney	244
	Hors Concours	247
2	Articles	251
	Cornel Pacurar: Circe Assassin Series Retractors	251
	Sébastien Luce \& Adrian	
	Storisteanu: Graffiti in	
	Black	257
	Jeff Coakley \& Andrey Frolkin: The	
	Elvis Effect	262
	Arno Tüngler: Record Breakers I	282
	Arno Tüngler: Series Capture and Win-a-piece Tasks	285
	Adrian Storisteanu: A Puzzling Side	
	Aside	301
3	Last Page	304
	Miervaldis (Walter) Jurševskis	304

Editor:

Collaborators:
Cornel Pacurar
Adrian Storisteanu, Arno Tüngler
Originals:
Articles:
originals@chessproblems.ca
Correspondence: bulletin@cssproblems.ca

ISSN 2292-8324

ChessProblems.ca Bulletin | Issue 8 |
| :--- |

CHESSPROBLEMS.CA bulletin

ISSUE 8 (APRIL 2016)

Chess Crash
[Painting in Mixed Media on paper, (c) Elke Rehder, http://www.elke-rehder.de. Reproduced with permission.]

ORIGINALS

2016 Informal Tourney

ChessProblems.ca's annual Informal Tourney is open for series-movers of any type and with any fairy conditions and pieces. Hors concours compositions (any genre) are also welcome!
Send to: originals@chessproblems.ca.

2016 Judge:

TBD
2016 Tourney Participants:

1. Alberto Armeni
2. Eric Huber
3. Branko Koludrović (HRV)
4. Sébastien Luce (FRA)
5. Cornel Pacurar (CAN)
6. Paul Răican
7. Adrian Storisteanu
8. Pierre Tritten
(FRA)
9. Arno Tüngler

T272 (Alberto Armeni):

i) 1.Rf3-f4 2.Rc8-c6+ Bg2×e4-d6 3.Bh3-f5+ Kg6×f5-c2 4.Rf4-d4 Sa7×c6-b6 \#
ii) $1 . \mathrm{Rc} 8-\mathrm{c} 6+\mathrm{Sa} 7 \times \mathrm{c} 6-\mathrm{a} 62 . \mathrm{Se} 4-\mathrm{f} 63 . \mathrm{Rf} 3-\mathrm{g} 3+\mathrm{Kg} 6 \times \mathrm{f6} 6 \mathrm{e} 44 . \mathrm{Rg} 3-\mathrm{c} 3 \mathrm{Bg} 2 \times \mathrm{h} 3-\mathrm{e} 6$ \#

T273 (Alberto Armeni):

1.Ba1-c3 2.Bc3 $\times \mathrm{b} 4[\mathrm{Bc} 1] 3 . \mathrm{Kb} 6 \times \mathrm{a} 5[\mathrm{Ra} 1] 4 . \mathrm{Ka} 5 \times a 4[\mathrm{~Pa} 2] 5 . \mathrm{Ka} 4-\mathrm{b} 56 . \mathrm{Kb} 5-\mathrm{c} 47 . \mathrm{Kc} 4-\mathrm{c} 38 . \mathrm{Kc} 3 \times \mathrm{c} 2[\mathrm{Sb} 1] 9 . \mathrm{Bb} 4-\mathrm{c} 3 \mathrm{Sb} 1-\mathrm{a} 3 \#$

T274 (Paul Răican, Arno Tüngler):
1.Kc1-d1 17.Kc4×b3[Sb1] 35.Kc1×b1 55.Kd3-e3 \& 1.Ra2-d2 Ke3×d2[Ra1] Z

ORIGINALS

T277: A very simple 'black line' of pawns. But in the end an AUW! C+ WinChloe. (Author)

T278: A noteworthy point is that setting a more sizeable stipulation (e.g., in trustworthy Popeye), for example ser-\#99, the 23 -move solution is still the one and only (no Alice in Wonderland monkey business). This results from a right combination of the unique path leading to a mate (leading to anything: though the problem is by no means a no-brainer, other choices arising during the solution lead to dead ends), and the characteristics of the locust - which not only is unable to lose a tempo whenever it feels like it, but also is compelled to capture, doing so in its weird style rather than the common, easily reversible, PWC piece exchange.

We're not talking conventional Canadianspring shrinkage here ($c p b-2$ p.27). This one leaves even the Winnipeg-winter variety behind. When stipulating a very very large number of moves, this is, for all intents and purposes, infinite shrinkage. The pinnacle of the beaver briefs. Move over, genau (cpb5 pp.151-152), here comes the genau-free genau!
(Author)

T276
Sébastien Luce

ser-h\# 4
Equipollents Circe Anti-Kings
$\mathrm{C}+(3+1) 1 \rightarrow$ ser- $=15$ Take\&Make Chess

C $+(2+16)$ ser-h $=5$
C+ (1+9) ser-\# 23
C+ (1+6)

No wK
Circe
Volage

PWC
No wK
响 = Locus
3 Solutions

T275 (Sébastien Luce):

i) $1 . \mathrm{Kc} 7 \times \mathrm{d} 6[+\mathrm{wPe5}] 2 . \mathrm{Kd} 6 \times \mathrm{e} 5[+\mathrm{wPf} 4] 3 . \mathrm{Ke} 5 \times f 4[+\mathrm{wPg} 3] 4 . \mathrm{Kf} 4 \times \mathrm{g} 3[+\mathrm{wPh} 2] \mathrm{h} 2-\mathrm{h} 4 \#$
ii) $1 . \mathrm{Kc} 7-\mathrm{b} 62 . \mathrm{Kb} 6 \times \mathrm{c} 5[+\mathrm{wPd} 4] 3 . \mathrm{Kc5} \times \mathrm{d} 4[+\mathrm{wPe} 3] 4 . \mathrm{Kd} 4 \times \mathrm{e} 3[+\mathrm{wPf} 2]$ f2-f4 \#
iii) $1 . \mathrm{Kc} 7-\mathrm{c} 62 . \mathrm{Kc} 6 \times \mathrm{d} 5[+\mathrm{wPe} 4] 3 . \mathrm{Kd} 5 \times \mathrm{e} 4[+\mathrm{wPf} 3] 4 . \mathrm{Ke} 4 \times \mathrm{f} 3[+\mathrm{wPg} 2] \mathrm{g} 2-\mathrm{g} 4 \#$

T276 (Sébastien Luce, Pierre Tritten):

1.Qe5-c7+1.Kd8×c7-g3 $2 . \mathrm{Kg} 3 \times \mathrm{g} 4-\mathrm{g} 33 . \mathrm{Kg} 3 \times f 3-\mathrm{b} 74 . \mathrm{Kb} 7 \times a 6-\mathrm{b} 85 . \mathrm{Kb} 8 \times \mathrm{a} 7-\mathrm{a} 66 . \mathrm{Ka} 6 \times \mathrm{b} 6-\mathrm{b} 57 . \mathrm{Kb} 5 \times \mathrm{c} 5-\mathrm{c} 48 . \mathrm{Kc} 4 \times \mathrm{d} 4-\mathrm{d} 3$ $9 . K d 3 \times e 3-\mathrm{e} 210 . \mathrm{Ke} 2 \times f 1-\mathrm{ff} 11 . \mathrm{Kf6} \times \mathrm{g} 5-\mathrm{g} 412 . \mathrm{Kg} 4 \times \mathrm{h} 4-\mathrm{f} 313 . \mathrm{Kf3} \times \mathrm{g} 2-\mathrm{g} 114 . \mathrm{Kg} 1 \times \mathrm{h} 2-\mathrm{a} 215 . \mathrm{Ka} 2 \times a 3-\mathrm{f} 8=$

T277 (Sébastien Luce):
$1 . g 2-g 1=B=w 2 . c 2-c 1=R=w 3 . b 2 \times c 1=Q[+w R a 1] 4 . Q c 1-f 1=w 5 . e 2 \times f 1=S[+w Q d 1] \operatorname{Bg} 1-h 2=$

T278 (Adrian Storisteanu):

1.Le5×c7-b8[+bLe5] 2.Lb8×b5-b4[+bLb8] 3.Lb4×c5-d6[+bLb4] 4.Ld6×d5-d4[+bLd6] 5.Ld4×b4-a4[+bLd4] 6.La4×d4-e4[+bLa4] 7.Le4×e5-e6[+bLe4] 8.Le6 \times d6-c6[+bLe6] 9.Lc6 \times e6-f6[+bLc6] 10.Lf6 $\times \mathrm{c} 6-\mathrm{b} 6[+\mathrm{bLf6]} 11 . \mathrm{Lb} 6 \times f 6-\mathrm{g} 6[+\mathrm{bLb6]} 12 . \operatorname{Lg} 6 \times \mathrm{b} 6-\mathrm{a} 6[+\mathrm{bLg} 6]$ $13 . \mathrm{La} 6 \times \mathrm{a} 4-\mathrm{a} 3[+\mathrm{bLa} 6] 14 . \mathrm{La} 3 \times \mathrm{a} 6-\mathrm{a} 7[+\mathrm{bLa} 3] 15 . \mathrm{La} 7 \times \mathrm{a} 3-\mathrm{a} 2[+\mathrm{bLa} 7] 16 . \mathrm{La} 2 \times \mathrm{a} 7-\mathrm{a} 8[+\mathrm{bLa} 2] 17 . \mathrm{La} 8 \times \mathrm{a} 2-\mathrm{a} 1[+\mathrm{bLa} 8] 18 . \mathrm{La} 1 \times \mathrm{c} 3-\mathrm{d} 4$ [+bLa1] 19.Ld4×e4-f4[+bLd4] 20.Lf4×d4-c4[+bLf4] 21.Lc4×f4-g4[+bLc4] 22.Lg4×c4-b4[+bLg4] 23.Lb4×g4-h4[+bLb4] \#

ORIGINALS

T279: AUW with capture and rebirth of the piece of promotion. A kind of Babson??!! (Authors)
T274, T281 \& T282: New move-length records for this stipulation and Circe for the corresponding number of total units. See Paul Răican's article "Series help-self with Circe rules" in Quartz 42 (November 2015) (Authors)
T280: Solutions:

ChessProblems.ca Bulletin

ORIGINALS

Hors Concours

HC124: Eiffel Tower

[Credit: Benh Lieu Song]

[Credit: Benh Lieu Song (detail)]

HC124
Sébastien Luce
Adrian Storisteanu

ser-\# 18
$\mathrm{C}+(1+9)$
Enemy Sentinels
No wK
= Locust

HC125

Sébastien Luce

ser-\# 26
Enemy Sentinels
No wK
嗂 $=$ Locust

HC124 (Sébastien Luce, Adrian Storisteanu):

$1 . \mathrm{LO} \times \mathrm{d} 4-\mathrm{c} 3(+\mathrm{e} 5) \quad 2 . \mathrm{LO} \times \mathrm{e} 5-\mathrm{f} 6(+\mathrm{c} 3) \quad 3 . \mathrm{LO} \times \mathrm{c} 3-\mathrm{b} 2(+\mathrm{f} 6)$ $4 . \mathrm{LO} \times \mathrm{c} 2-\mathrm{d} 2(+\mathrm{b} 2) \quad 5 . \mathrm{LO} \times \mathrm{d} 3-\mathrm{d} 4(+\mathrm{d} 2) \quad 6 . \mathrm{LO} \times \mathrm{f} 4-\mathrm{g} 4(+\mathrm{d} 4)$ $7 . \mathrm{LO} \times \mathrm{e} 6-\mathrm{d} 7(+\mathrm{g} 4) \quad 8 . \mathrm{LO} \times \mathrm{d} 4-\mathrm{d} 3(+\mathrm{d} 7) \quad 9 . \mathrm{LO} \times \mathrm{f} 3-\mathrm{g} 3(+\mathrm{d} 3)$ $10 . \mathrm{LO} \times \mathrm{g} 4-\mathrm{g} 5(+\mathrm{g} 3) \quad 11 . \mathrm{LO} \times \mathrm{f6} 6 \mathrm{e} 7(+\mathrm{g} 5) \quad 12 . \mathrm{LO} \times \mathrm{e} 2-\mathrm{e} 1(+\mathrm{e} 7)$ $13 . \mathrm{LO} \times \mathrm{g} 3-\mathrm{h} 414 . \mathrm{LO} \times \mathrm{g} 5-\mathrm{f} 6(+\mathrm{h} 4) 15 . \mathrm{LO} \times \mathrm{b} 2-\mathrm{a} 1(+\mathrm{f} 6) 16 . \mathrm{LO} \times \mathrm{f6}-$ g7 17.LO $\times \mathrm{g} 2-\mathrm{g} 1(+\mathrm{g} 7) 18 . \mathrm{LO} \times \mathrm{g} 7-\mathrm{g} 8$ \#

HC125 (Sébastien Luce):

$1 . \mathrm{LO} \times \mathrm{f4}-\mathrm{g} 5(+\mathrm{e} 3) \quad 2 . \mathrm{LO} \times \mathrm{e} 5-\mathrm{d} 5(+\mathrm{g} 5)$ $4 . \mathrm{LO} \times \mathrm{f} 3-\mathrm{e} 2(+\mathrm{h} 5) \quad 5 . \mathrm{LO} \times \mathrm{d} 3-\mathrm{c} 4(+\mathrm{e} 2)$ $7 . \mathrm{LO} \times \mathrm{c} 4-\mathrm{b} 3(+\mathrm{e} 6) \quad 8 . \mathrm{LO} \times \mathrm{c} 3-\mathrm{d} 3(+\mathrm{b} 3) \quad 9 . \mathrm{LO} \times \mathrm{e} 4-\mathrm{f5}(+\mathrm{d} 3)$ $10 . \mathrm{LO} \times \mathrm{d} 3-\mathrm{c} 2(+\mathrm{f} 5) \quad 11 . \mathrm{LO} \times \mathrm{e} 2-\mathrm{f} 2(+\mathrm{c} 2) \quad 12 . \mathrm{LO} \times \mathrm{f} 5-\mathrm{f} 6(+\mathrm{f} 2)$ $13 . \mathrm{LO} \times \mathrm{f} 2-\mathrm{f} 1(+\mathrm{f} 6) 14 . \mathrm{LO} \times \mathrm{f6}-\mathrm{f7} 15 . \mathrm{LO} \times \mathrm{e} 6-\mathrm{d} 5(+\mathrm{f} 7) 16 . \mathrm{LO} \times \mathrm{b} 3-$ a2 (+d5) $\quad 17 . \mathrm{LO} \times \mathrm{d} 5-\mathrm{e} 6(+\mathrm{a} 2) \quad 18 . \mathrm{LO} \times \mathrm{e} 3-\mathrm{e} 2(+\mathrm{e} 6) \quad 19 . \mathrm{LO} \times \mathrm{e} 6-$ e7(+e2) 20.LO×e2-e1(+e7) 21.LO×g3-h4 22.LO×h5-h6(+h4) $23 . \mathrm{LO} \times \mathrm{h} 4-\mathrm{h} 3(+\mathrm{h} 6) \quad 24 . \mathrm{LO} \times \mathrm{h} 6-\mathrm{h} 7(+\mathrm{h} 3) \quad 25 . \mathrm{LO} \times \mathrm{h} 3-\mathrm{h} 2(+\mathrm{h} 7)$ 26.LO \times h7-h8(+h2) \#

White UltraSchachZwang

HC127

György Bakcsi

$\mathrm{h}=8$
Black must check

HC126 (György Bakcsi):

1.Rc4-c5+ Se4×c5 2.Re6-a6+ Sc5×a6 3.Rc3-c5+ Sa6×c5 4.Rf6-a6+ Sc5×a6 5.Rc2-c5+ Sa6×c5 6.Rg6-a6+ Sc5×a6 7.Rc1-c5+Sa6×c5 8.Se7-c6+ Ba8×c6 =

HC127 (György Bakcsi):

1.Rd1-d5+Sf6×d5 2.Bc1-f4+Sd5×f4 3.Ra6-e6+ Sf4×e6 4.Ba7d4+ Se6×d4 5.Rf7-f5+ Sd4×f5 6.Bb4-d6+ Sf5×d6 7.Rq4-d4+ Sd6×e4 8.Be7-f6+ Se4×f6 = (C+ Alybadix)

ORIGINALS

[Credit: coolmonfrere]

HC128

ser-\# 23
Enemy Sentinels
No wK
嗳 = Locust
2 Solutions

HC128 (Sébastien Luce):

I) $1 . \mathrm{LO} \times \mathrm{f} 3-\mathrm{g} 3(+\mathrm{e} 3) \quad 2 . \mathrm{LO} \times \mathrm{e} 3-\mathrm{d} 3(+\mathrm{g} 3) \quad 3 . \mathrm{LO} \times \mathrm{d} 2-\mathrm{d} 1(+\mathrm{d} 3)$ $4 . \mathrm{LO} \times \mathrm{d} 3-\mathrm{d} 4 \quad 5 . \mathrm{LO} \times \mathrm{d} 5-\mathrm{d} 6(+\mathrm{d} 4) \quad 6 . \mathrm{LO} \times \mathrm{d} 4-\mathrm{d} 3(+\mathrm{d} 6) \quad 7 . \mathrm{LO} \times \mathrm{d} 6-$ d7 $(+\mathrm{d} 3) \quad 8 . \mathrm{LO} \times \mathrm{d} 3-\mathrm{d} 2(+\mathrm{d} 7) \quad 9 . \mathrm{LO} \times \mathrm{c} 3-\mathrm{b} 4(+\mathrm{d} 2) \quad 10 . \mathrm{LO} \times \mathrm{c} 4-$ $\mathrm{d} 4(+\mathrm{b} 4) \quad 11 . \mathrm{LO} \times \mathrm{e} 5-\mathrm{f} 6(+\mathrm{d} 4) \quad 12 . \mathrm{LO} \times \mathrm{f} 4-\mathrm{f} 3(+\mathrm{f} 6) \quad 13 . \mathrm{LO} \times \mathrm{f} 6-$ f7(+f3) 14.LO×f3-f2(+f7) 15.LO×d4-c5(+f2) 16.LO×b4a3(+c5) 17.LO×c5-d6(+a3) 18.LO×g3-h2(+d6) 19.LO×d6c7(+h2) 20.LO×d7-e7(+c7) 21.LO×e2-e1(+e7) 22.LO \times d2-c3 $23 . \mathrm{LO} \times \mathrm{c} 7-\mathrm{c} 8(+\mathrm{c} 3)$ \#
II) $1 . \mathrm{LO} \times \mathrm{e} 2-\mathrm{e} 1(+\mathrm{e} 3) 2 . \mathrm{LO} \times \mathrm{e} 3-\mathrm{e} 43 . \mathrm{LO} \times \mathrm{e} 5-\mathrm{e} 6(+\mathrm{e} 4) 4 . \mathrm{LO} \times \mathrm{e} 4-$ e3(+e6) $\quad 5 . \mathrm{LO} \times \mathrm{e} 6-\mathrm{e} 7(+\mathrm{e} 3) \quad 6 . \mathrm{LO} \times \mathrm{e} 3-\mathrm{e} 2(+\mathrm{e} 7) \quad 7 . \mathrm{LO} \times \mathrm{d} 2-$ c2 (+e2) $\quad 8 . \mathrm{LO} \times \mathrm{e} 2-\mathrm{f} 2(+\mathrm{c} 2) \quad 9 . \mathrm{LO} \times \mathrm{c} 2-\mathrm{b} 2(+\mathrm{f} 2) \quad 10 . \mathrm{LO} \times \mathrm{c} 3-$ d4 (+b2) $11 . \mathrm{LO} \times \mathrm{d} 5-\mathrm{d} 6(+\mathrm{d} 4) \quad 12 . \mathrm{LO} \times \mathrm{d} 4-\mathrm{d} 3(+\mathrm{d} 6) \quad 13 . \mathrm{LO} \times \mathrm{d} 6-$ $\mathrm{d} 7(+\mathrm{d} 3) \quad 14 . \mathrm{LO} \times \mathrm{d} 3-\mathrm{d} 2(+\mathrm{d} 7) \quad 15 . \mathrm{LO} \times \mathrm{f} 4-\mathrm{g} 5(+\mathrm{d} 2) \quad 16 . \mathrm{LO} \times \mathrm{d} 2-$ $\mathrm{c} 1(+\mathrm{g} 5) 17 . \mathrm{LO} \times \mathrm{b} 2-\mathrm{a} 318 . \mathrm{LO} \times \mathrm{f} 3-\mathrm{g} 3(+\mathrm{a} 3) 19 . \mathrm{LO} \times \mathrm{g} 5-\mathrm{g} 6(+\mathrm{g} 3)$ $20 . \mathrm{LO} \times \mathrm{g} 3-\mathrm{g} 2(+\mathrm{g} 6) \quad 21 . \mathrm{LO} \times \mathrm{g} 6-\mathrm{g} 7(+\mathrm{g} 2) \quad 22 . \mathrm{LO} \times \mathrm{g} 2-\mathrm{g} 1(+\mathrm{g} 7)$ $23 . \mathrm{LO} \times \mathrm{g} 7-\mathrm{g} 8$ \#

Paul Răican
 Arno Tüngler

ser-hsZe7 122 C+ (13+1)
Circe

HC129
Branko Koludrović

HC130
György Bakcsi

$\mathrm{h}=8$
Black must check

HC131
György Bakcsi

$\mathrm{h}=7$
Black must check

HC129 (Branko Koludrović; Paul Răican, Arno Tüngler):
$15 . \mathrm{Kd} 8 \times \mathrm{c} 8[+\mathrm{wBf} 1] 27 . \mathrm{Kg} 1 \times \mathrm{f} 139 . \mathrm{Kc} 8 \times \mathrm{b} 8[+\mathrm{wSg} 1] 56 . \mathrm{Kb} 1 \times \mathrm{a} 2$ [+wRh1] 75.Ka6×a5[+wPa2] 94.Kb1×a2 114.Ka5 $\times \mathrm{b} 4[+\mathrm{wRa} 1]$ $116 . \mathrm{Kb} 5 \times \mathrm{b} 6$ 120.Ke6×f6[+wPf2] 122.Ke7-e8 Ra1-a8+ 123.Ke8e7 Z

HC130 (György Bakcsi):

1.Rb5-b6+ Rb7×b6 2.Bf1-b5+ Rb6×b5 3.Rf5-c5+ Rb5×c5 4.Be6-d5+ Rc5×d5 5.Rd7-d6+ Rd5×d6 6.Bh3-d7+ Rd6×d7 7.Ra7-c7+Rd7×c7 8.Bc8-b7+Rc7×b7 =
(C+ Alybadix)

HC131 (György Bakcsi):

1.Sa8-b6+ Rb5×b6 2.Re6-d6+ Rb6×d6 3.Qa6-c6+ Rd6×c6 4.Rf6-d6+ Rc6×d6 5.Sg4-f6+ Rd6×f6 6.Bh3-e6+ Rf6×e6 $7 . f \times e 6+\mathrm{Kd} 5 \times \mathrm{e} 6=$
(C+ Alybadix)

ORIGINALS

HC134：Indian Theme，change of function． （Author）

HC135：C＋Alybadix

HC133
György Bakcsi János Csák

h\＃ 8
UltraSchachZwang

HC132（György Bakcsi，János Csák）：

1．Ra6－a4＋b2－b4 $2 . R a 4 \times b 4+\quad$ c2－c4 $3 . R b 4 \times c 4+\quad$ d2－d4 4．Rc4×d4＋e2－e4 5．Rd4×e4＋f3－f4 6．Re4×f4＋Kg4－h5 7．Rf4×f5＋Kh5－h4 8．Rf5－h5＋Kh4－g4 9．Rh5－h4＋Kg4－f3 10．Rh4－h3＋g2－g3\＃

HC133（György Bakcsi，János Csák）：

$1 . \mathrm{h} 4 \times \mathrm{g} 3+\mathrm{Kh} 2 \times \mathrm{g} 32 . \mathrm{Rf} 4 \times \mathrm{g} 4+\mathrm{Kg} 3-\mathrm{f} 3 \mathrm{~B}^{3 . R e 4 \times e 3+} \mathrm{Kf} 3 \times \mathrm{e} 3$
4．Rg4－e4＋Ke3×d3 5．Re4×d4＋Kd3×c3 6．Rd4－c4＋Kc3×b3
7．Rc4×b4＋Kb3－a3 8．Rb4－a4＋Bc2×a4 \＃

HC135

György Bakcsi János Csák

$\mathrm{h}=16$
Black must check
C $+(4+3)$
b）曽 $\mathrm{c} 5 \rightarrow \mathrm{~g} 4$
些 $=$ Neutral Queen
有 Neutral Bishop
＝Neutral Nightrider
HC134
Gerald EttI

HC134（Gerald EttI）：

a） $1 . \mathrm{nNb} 5-\mathrm{h} 8 \mathrm{nBg} 3-\mathrm{d} 6+2 . \mathrm{Kc} 5-\mathrm{b} 5 \mathrm{nBd} 6 \times \mathrm{b} 4 \#$
b） $1 . \mathrm{nBg} 3-\mathrm{b} 8 \mathrm{nNb} 5-\mathrm{c} 72 . \mathrm{Kg} 4-\mathrm{g} 3 \mathrm{nNc} 7 \times e 3 \#$

HC135（György Bakcsi，János Csák）：

1．Rg8－g6＋Kh6－h5 2．Rg6－h6＋Kh5－g5 3．Rh6－h5＋Kg5－f6 4．Rh5－ h6＋Kf6－e5 5．Rh6－h5＋Ke5－d6 6．Rh5－h6＋Kd6－c5 7．Rh6－h5＋ Kc5－b6 8．Rh5－h6＋Kb6－a5 9．Rh6－h5＋Ka5×a6 10．Rh5－h6＋ Ka6－b5 11．Rh6－h5＋Kb5－c6 12．Rh5－h6＋Kc6－d5 13．Rh6－h5＋ Kd5－e6 14．Rh5－h6＋Ke6－f5 15．Rh6－h5＋Kf5－g6 16．Rh5－h6＋ $\mathrm{Kg} 6 \times \mathrm{h} 6=$

ORIGINALS

HC136: White excelsior, black selfblock, white underpromotion. (Author) HC137: Switchback of white knight. Miniature. (Author)

… CdS A. Rs8.Cf4 2. Rb7.C. Ph 3 (quhw/he) 3. Phd = T.. Cgd 4. Th7.Cél 5. Ra\&. Cs3 6. Ta7. Ca4 (Cd6?) 7. Fb7. Cb6 + mat. Suitoli\&a of wive Knight. Whts $K_{\text {ing }}$ is newary

ChessProblems.ca Bulletin Issue 8

Circe Assassin Series Retractors

by Cornel Pacurar

"You cannot threaten a duck with a river" - Da'i Rashid Ad-Din Sinan

ARTICLES

Circe
(and Ulysses)
[Die Schedelsche Weltchronik, Hartmann Schedel, 1493, p. (041) XLI]

In Greek mythology, Circe is a goddess of magic (or sometimes a nymph, witch, enchantress or sorceress). By most accounts, Circe was the daughter of Helios, the god of the sun, and Perse, an Oceanid. [Wikipedia]

A less-accustomed category of the Retractors genre, the Series Retractor is, undoubtedly, enjoying a resurgence of popularity right now. With a total output of only about 100 compositions and with so many untapped areas and much potential, this is certainly a welcome and encouraging development. Even though this short article focuses on an even smaller segment (series retractors employing the Circe Assassin fairy condition), one of its chief aims is, nevertheless, to further promote the popularization of the Series Retractor subgenre.

Like all Retractors, a Series Retractor is a chess composition which consists of two parts: the retro phase (or retroplay) and the forward phase. In the retro phase, either White or Black retracts a series of moves.

It may come as a surprise to many (at least to those who believe that the Series Mover is a relatively recent happening in chess composition), but the Series Retractor is not a twentieth-century invention. From the nineteenth-century we have SR1 - published by Alexander H. Robbins on October 15, 1882, in the St. Louis Globe-Democrat newspaper (the good old days!) - with the following stipulation: Black has made three successive moves, retrace the last two, then White to play and mate in two moves.

SR1

Alexander H. Robbins

St. Louis Globe-Democrat 1882
dedicated to W. E. Arnold \& B. R. Foster

SR2

Hansjörg Schiegl
feenschach 1970

$-3 \mathrm{~b} \& \mathrm{~h} \# 1$
Circe

Black retracts the series $-1 . \mathrm{g} 4 \times$ Qf3 $-2 . \mathrm{ff} \times \mathrm{Sg} 4$. As the first move in the three-move series played by black must have been Pf7-f5, white can now play en passant $1 . \mathrm{g} \times \mathrm{f} 6+$!, followed by $1 \ldots \mathrm{e} 7 \times \mathrm{f} 6+$ 2. $\mathrm{Qf} 3 \times \mathrm{f} 6 \#$ or $1 . \ldots \mathrm{Kg} 7 \times \mathrm{g} 6$ 2.Qf3-f5\#

Until 1970 only a few other series retractors were published (e.g. Karl Fabel, The Fairy Chess Review 10/1957, series-self-retrostalemate in 29 moves (no uncaptures); Carl Becker, Frankfurter Notizen 1965, -3b \& h\#1; Hans Kluver, Aachener Nachrichten 1969, -2w \& ser-\#2), but a number of series retractors published in 1970 in Stella Polaris (Theodor Steudel - who remains one of the most prolific composers of series retractors to date) and feenschach (Hansjörg Schiegl) sparked an interest in this subgenre.

1970 also brought the first Circe Series Retractors. SR2 shows a very simple idea, demonstrating at the same time that bringing fairy conditions into the Series Retractors mix has certain potential SR2 solution: $-1 . \mathrm{Kg} 2 \times \mathrm{Rh} 1 \quad-2 . \mathrm{Kf} 3-\mathrm{Kg} 2 \quad-3 . \mathrm{Kg} 3 \times \mathrm{Rf} 3(+w R h 1)$ \& 1.Kg3-h4 Rf3-h3\#.

More complex Circe Series Retractors ideas were successfully realized during the 1980's (Manfred Rittirsch) and 1990's (Gerard Ettl and, especially, Peter Wong - see ChessProblems.ca Bulletin Issue 3), a few of those being included in the corresponding FIDE Albums.

At the beginning of the new millennium, Klaus Wenda was the first to experiment with another Circe flavour: Anticirce (Die Schwalbe 198, 12/2002). Finally, in 2013 the author of this article had introduced Circe Assassin into the small but beautiful world of Series Retractors.

As noted by Paul Răican in Quartz 36, June 2011, Circe Assassin was conceived and baptized by Romeo Bedoni in 1978, but the first Circe Assassin problem was only published in September 1993 in Rex Multiplex. Circe Assassin was first associated with a Retro genre (Proca Retractor) by Paul Răican in 2007, and the application of Assassin rebirths to Retro genres (Proca, Help, and Series Retractors) has been up to this point an almost exclusively Romanian affair - with compositions by either Romanian (Paul Răican, Vlaicu Crișan, Eric Huber) or Romanian-born (Adrian Storisteanu, Cornel Pacurar) Canadian composers.

ARTICLES

Retractor: In a Retractor problem there are two phases: the retro phase (or retroplay) and the forward phase. In the retro phase, the two sides alternatively take back (retract) their moves. In the forward phase, there is a stipulation to satisfy. A typical full Retractor stipulation is "White retracts his last move and then checkmates in one move". One way to look at retractors is to consider they are fairy problems where the moves happen to be retractions. These problems have a retro-flavor because only legal last moves can be retracted, but they also have the usual, forward, combinatorial flavor because you have to pick the right retraction, the one that will allow e.g. to mate in one.

Series Retractor: In the retro phase, White or Black retracts a series of moves.

Circe Assassin: The Circe rebirth of a captured unit occurs even when the rebirth square is occupied - in which case the occupying unit is removed (it is "assassinated"). Hence a unit located on its rebirth square cannot be removed: its return eliminates the captor (who, in effect, commits "suicide"). A king is in check if it stands on the rebirth square of a piece that is threatened.

ChessProblems.ca Bulletin | Issue 8 |
| :--- |

First, let's take a look at a very simple non-series scheme:

SR3

-1b \& h\#1
$(2+1)$
Circe Assassin
2 Solutions

The first solution is purely orthodox: I) -1.Kd8-e8 \& 1.Kd8-c8 Ra1-a8\#

The second solution incorporates in the retro play a Circe Assassin motif of significant importance for series retractors: active suicide. Black captured the white rook on its home-square a1, which was then reborn on the same square, eliminating in the process the capturing unit!
II) $-1 . \operatorname{Ra} 8 \times \operatorname{Ra} 1(+w R a 1$,
-bRa1) \& 1.0-0-0 Ra1-a8\#

SR4 and SR5 are the very first Circe Assassin Series Retractors, composed during two days of intense efforts for the Messigny 2013 fairy tourney. The forward stipulation for SR4 is CapZug in 1 move, and for SR5 is CheckZug in 5 moves.
(see http://parryserieshub.chessproblems.ca/ for details regarding the CapZug Family of aims, an invention of the late Dan Meinking).

SR4: $-1 . \operatorname{Bg} 6 \times f 7(+b P f 7,-w B f 7)-2 . B b 1-g 6-3 . B g 6 \times f 7(+b P f 7$, $-w B f 7)-4 . B c 2-g 6-5 . B g 6 \times f 7(+b P f 7,-w B f 7)-6 . B d 3-g 6$ $-7 . \mathrm{Bg} 6 \times f 7(+\mathrm{bPf} 7,-\mathrm{wBf7})-8 . \mathrm{Be} 4-\mathrm{g} 6-9 . \mathrm{Bg} 6 \times f 7(+\mathrm{bPf} 7$, $-\mathrm{wBf7}$) $-10 . \mathrm{Bf5} 5 \mathrm{~g} 6-11 . \mathrm{Bg} 6 \times f 7(+\mathrm{bPf7} 7$,-wBf7)
\& 1.Rd2×h2(+bPh7,-bBh7) xz
SR5: $-1 . Q b 7 \times d 7(+b P d 7,-w Q d 7)-2 . Q h 1-b 7-3 . Q b 7 \times d 7(+b P d 7$, $-w Q d 7)-4 . Q g 2-b 7-5 . Q b 7 \times d 7(+b P d 7,-w Q d 7)-6 . Q f 3-b 7$
$-7 . Q b 7 \times d 7(+b P d 7,-w Q d 7)-8 . Q d 5-b 7$
\& 1.Ka8-b7! Rg3-g5! 2.Qg2-g4 Rg5-g7 3.Qg4-g6 Rg7-e7 4.Qg6-f7 Re7-e8 5.Qf7×e8(+bRa8) +z

The next five compositions (SR6-SR10) have similar stipulations: black retracts a series of moves, then white gives mate in one move. SR6 is my favourite. In the first solution, all black moves are played by the queen which committed suicide at $\mathfrak{f} 2$, the mate being given by promoting to queen the white pawn strategically placed by the black queen during the retro phase at f7. The passive suicide of the black bishop at $\mathfrak{f 2}$ is necessary so that the white queen is protected by its king. In the second solution, two black rooks do the groundwork, the double-check (wRf8 checks

SR7

Cornel Pacurar
Adrian Storisteanu
TT-121, SuperProblem
2014
Special Honourable Mention
-3b \& \#1
$(2+1)$
assin
b) ${ }^{\text {d }} \mathrm{e} 7 \rightarrow \mathrm{a} 8$

-2b \& \#1
$(4+2)$
Circe Assassin
b) $2 \mathrm{~b} 4 \rightarrow \mathrm{a} 3$

2 Solutions

[^0]bKa8 both directly and via the threat to capture bRf5) mate is given, fittingly, via a promotion to rook, a white bishop being now required at f 2 (wQf 2 doesn't work as the black king would be in a check position - Qf2 \times Rf5 (+bRa8,-bKa8)). SR7 participated in a thematic tourney asking for mate by double check given by a single unit, something for which Circe Assassin is well suited. The judges Vlaicu Crișan and Eric Huber noted: "bB-bB Loshinski magnet four times - probably shown for the first time in a series Retractor Circe Assassin - a specialty of Canadian composers. The contents might seem not very deep at first glance, but it is fully satisfactory, with specific suicides and mates"

SR6:

a) $-1 . Q f 7 \times P f 2(+w P f 2,-b Q f 2)-2 . Q f 5 \times P f 7(+w P f 2,-w P f 2)$
$-3 . Q d 7 \times P f 5(+w P f 2,-b B f 2) \& 1 . f 7-f 8=Q \#$
b) $-1 . R f 7 \times P f 2(+w P f 2,-b R f 2)-2 . R f 5 \times P f 2(+w P f 2,-b R f 2)$
$-3 . R b 7 \times P f 7(+w P f 2,-w B f 2) \& 1 . f 7-f 8=R \#$
SR7:
a) I) $1 . \mathrm{Bb} 8 \times \mathrm{Ph} 2(+\mathrm{wPh} 2,-\mathrm{bBh} 2) 2 . \mathrm{Bc} 7 \times \mathrm{Ph} 2(+\mathrm{wPh} 2,-\mathrm{bBh} 2)$
\& 1.Sb4-a6\#
II) $1 . \operatorname{Be} 5 \times \mathrm{Ph} 2(+\mathrm{wPh} 2,-\mathrm{bBh} 2) 2 . \mathrm{Bf} 4 \times \mathrm{Ph} 2(+\mathrm{wPh} 2,-\mathrm{bBh} 2)$
\& 1.Sb4-d3\#
b) I) $1 . \mathrm{Bc} 7 \times \mathrm{Ph} 2(+\mathrm{wPh} 2,-\mathrm{bBh} 2) 2 . \mathrm{Bd} 6 \times \mathrm{Ph} 2(+\mathrm{wPh} 2,-\mathrm{bBh} 2)$
\& 1.Sa3-b5\#
II) $1 . \mathrm{Bd} 6 \times \mathrm{Ph} 2(+\mathrm{wPh} 2,-\mathrm{bBh} 2) 2 . \mathrm{Be} 5 \times \mathrm{Ph} 2(+\mathrm{wPh} 2,-\mathrm{bBh} 2)$
\& 1.Sa3-c4\#

SR8

Cornel Pacurar

Adrian Storisteanu
Variantim 2015

-4 b \& \#1 2 Sol.
$(5+4)$
Circe Assassin
b) 解 $\mathrm{e} 5 \rightarrow \mathrm{f} 6$

SR9

Cornel Pacurar
ChessProblems.ca Bulletin 2015

-5 b \& \#1 Circe Assassin

SR8 is similar to SR7 but this time around the key actors are the black rooks. The first bR resurrected clears the path for the second, which follows along the same retro lines. Four pairs of suicidal rooks are uncaptured in this manner, for four doublecheck royal assassin mates. SR9 shows the Seeberger theme and a very specific Circe Assassin checkmate.

SR8:
a) I) $-1 . R c 2 \times$ Pf2 $(+w P f 2,-b R f 2)-2 . R c 6-c 2-3 . R c 2 \times P f 2$ (+wPf2,-bRf2) -4.Rc4-c2 \& 1.Ke5-d5\#
II) $-1 . \operatorname{Rg} 2 \times$ Pf2 $2(+w P f 2,-b R f 2)-2 . \operatorname{Rg} 6-g 2-3 . R g 2 \times P f 2$
(+wPf2,-bRf2) -4.Rg4-g2 \& 1.Ke5-f5\#
b) I) $-1 . R d 2 \times P f 2(+w P f 2,-b R f 2)-2 . R d 7-d 2-3 . R d 2 \times P f 2$ (+wPf2,-bRf2) -4.Rd5-d2 \& 1.Kf6-e6\#
II) $-1 . \operatorname{Rh} 2 \times \operatorname{Pf} 2(+w P f 2,-b R f 2)-2 . R h 7-h 2-3 . R h 2 \times P f 2$ ($+\mathrm{wPf} 2,-\mathrm{bRf} 2$) $-4 . R h 5-\mathrm{h} 2$ \& 1.Kf6-g6\#

SR9:

$-1 . \mathrm{Sf} 4 \times \mathrm{Pg} 2(+\mathrm{wPg} 2,-\mathrm{bSg} 2)-2 . \mathrm{Sh} 5-\mathrm{f} 4-3 . \mathrm{Rh} 2 \times \mathrm{Pg} 2(+\mathrm{wPg} 2$,
-bRg2) $-4 . R h 4-h 2-5 . \operatorname{Ph} 3 \times P g 2(+w P g 2,-b P g 2) \& 1 . K h 6-\mathrm{g} 5 \#$

SR10

Cornel Pacurar
Quartz 2015

-3b \& \#1
Circe Assassin
b) ㅎ. $\mathrm{d} 8 \rightarrow \mathrm{~b} 8$
c) 昆 $\mathrm{d} 8 \rightarrow \mathrm{~h} 8$

SR10 was the first Circe Assassin Series Retractor with three twins. SR11, asking for stalemate in one move in the forward

ARTICLES

Assassins (from Arabic: Asasiyun) is the name used to refer to the medieval Nizari Ismailis.
Often characterized as a secret order led by a mysterious "Old Man of the Mountain", the Nizari Ismailis were an Islamic sect that formed in the late 11th century from a split within Ismailism, itself a branch of Shia Islam.
While "Assassins" typically refers to the entire medieval Nizari sect, in fact only a class of acolytes known as the fida'i actually engaged in assassination work. Lacking their own army, the Nizari relied on these trained warriors to carry out espionage and assassinations of key enemy figures, and over the course of 300 years successfully killed two caliphs, and many viziers, sultans and Crusader leaders.
[Wikipedia]

Checkmate and Magazine are also words of Arabic origin. Bulletin has Latin roots.
phase, shows mutual bK-bQs clearances, BK switchbacks and retro Phoenix (the bQ in the diagram vanishes through unpromotion to a bP, only to be substituted with a suicidal bQ resurrected from the wP) whose motivation rests with black's at-the-time queen being, or not, in the right place relative to the bK. The construction of the stalemate position, though poor in specific uncaptures, is well delineated by the circe assassin condition. BQ's unpromotion must be done without uncapture (moves 1-3); black has the capability to resurrect a piece of its own (via unsuicide, move 6) - which does the necessary selfblocking (moves 4-5 and 7-8).

SR10:

a) $-1 . Q d 3 \times P d 2(+w P d 2,-b Q d 2)-2 . Q e 2 \times P d 3(+w P d 2,-w B d 2)$
-3.Qe8-e2 \& 1.Bd2-g5\#
b) $-1 . \operatorname{Rd} 3 \times \operatorname{Pd} 2(+w P d 2,-b R d 2)-2 . \operatorname{Re} 3 \times P d 3(+w P d 2,-w Q d 2)$
-3.Re4-e3 \& 1.Qd2-b4\#
c) $-1 . \mathrm{Bd} 5-\mathrm{f} 3-2 . \mathrm{Sf} 3 \times \mathrm{Pd} 2(+\mathrm{wPd} 2,-\mathrm{bSd} 2)-3 \cdot \mathrm{Be} 6 \times \mathrm{Pd} 5(+\mathrm{wPd} 2$, - wQd2) \& 1.Qd2-h6\#

SR11:

-1.Kh1-g1-2.Qg1-f1 -3.g2-g1=Q -4.Kg1-h1 -5.Kf1-g1
-6.Qg1×Pf2(+wPf2,-bQf2) -7.Qh1-g1 -8.Kg1-f1
\& 1.Kf3-e2=

SR12

Adrian Storisteanu
ChessProblems.ca Bulletin
2014

add 1

for $-2 \mathrm{w} \&=1$
Circe Assassin

SR12b

SR12 was the first original series retractor published in the Bulletin (Issue 1). (In fact, the first anyproblem published here.) SR13 features RQ / QR assassin resurrections and echo stalemates - fairy, though only circesque.

SR13

Adrian Storisteanu
Problemskak 2015

SR13:

I) $-1 . \mathrm{Ra} 5 \times \mathrm{Pa} 7(+\mathrm{bPa} 7,-\mathrm{wRa} 7)-2 . \mathrm{Rh} 5 \times \mathrm{Pa} 5(+\mathrm{bPa} 7,-\mathrm{wQa} 7)$
\& 1. Qa7-e7=
II) 1.Qa5 $\times \mathrm{Pa} 7(+\mathrm{bPa} 7,-\mathrm{wQa} 7) 2 . \mathrm{Qe} 5 \times \mathrm{Pa} 5(+\mathrm{bPa} 7,-\mathrm{wRa} 7)$
\& 1.Ra7-h7=

ARTICLES

Problems SR14 - SR17 are original for the Bulletin.

$-3 \mathrm{~b} \&!=1$
Circe Assassin

SR15
Cornel Pacurar
Original

-2b \& h\#1 Circe Assassin 2 Solutions

SR16
Cornel Pacurar
Original

(2+1) -2b \& h\#1
Circe Assassin
4 Solutions

SR17
Cornel Pacurar
Original

-2b \& h\#1
(3+1)
Circe Assassin
b) 皆 $\mathrm{c} 3 \rightarrow \mathrm{c} 5$
c) $\mathrm{c} 3 \rightarrow \mathrm{c} 8$

QRS resurrections in SR14, with a pretty, model (Bohemian retractor!?), though non-fairy stalemate. It proved impossible to add a B resurrection (which must take place prior to the Q one, the reborn B un-slip-sliding away through d8 on its way to some final destination). .

SR14:

$-1 . Q d 8 \times P d 2(+w P d 2,-b Q d 2) 2 . R d 6 \times P d 2(+w P d 2,-b R d 2)$
3.Rb6×Pd6(+wPd2,-bSd2) \& 1.d6-d7 !=

The last three compositions included in this article, SR15-SR17,
have the exact same stipulation: black retracts a series of two moves then helpmate in one move

SR15:

I) $-1 . \mathrm{Qa} 5 \times \mathrm{Pa} 2(+w P a 2,-\mathrm{bQa} 2)-2 . \mathrm{Qb} 4 \times \mathrm{Pa} 5(+w P a 2,-w Q a 2)$
\& 1.Kc4-c5 Qa2-d5\#
II) $-1 . \mathrm{Qa} 7 \times \mathrm{Pa} 2(+\mathrm{wPa} 2,-\mathrm{bQa} 2)-2 . \mathrm{Qd} 4 \times \mathrm{Pa} 7(+\mathrm{wPa} 2,-\mathrm{wQa} 2)$ \& 1.Kc4-c3 Qa2-b3\#

SR16 combines four solutions without twining and SR17
has three twins (make sure you don't overlook the last one!).

SR16:

I) $-1 . K g 4-f 4-2 . K f 3 \times \operatorname{Sg} 4(+w S b 1,-w Q b 1) \& 1 . K f 3-e 2$ Qb1-d1\#
II) $-1 . \mathrm{Ke} 4-\mathrm{f} 4-2 . \mathrm{Kf} 3 \times \mathrm{Se} 4(+\mathrm{wSb1},-\mathrm{wQb} 1)$ \& 1.Kf3-g2 Qb1-h1\# III) $-1 . \mathrm{Bg} 6 \times \mathrm{Sb1}(+\mathrm{wSb1},-\mathrm{bBb} 1)-2 . \mathrm{Bd} 3 \times \mathrm{Sg} 6(+w S b 1,-w Q b 1) \&$
1.Kf4-e4 Qb1×d3(Bc8) \#
IV) $-1 . \mathrm{Bf5} 5 \mathrm{Sb1}(+w S b 1,-\mathrm{bBb} 1)-2 . \mathrm{Bh} 3 \times \mathrm{Sf5}(+w S b 1,-w Q b 1)$ \&
1.Kf4-g4 Qb1-e4\#

SR17:
a) $-1 . Q f 5 \times$ Pf2($+w P f 2,-b Q f 2)-2 . Q c 2 \times P f 5(+w P f 2,-w Q f 2)$
\& 1.Kc3-d3 Qf2-d4\#
b) $-1 . \operatorname{Rg} 3 \times \operatorname{Pg} 2(+w P g 2,-b R g 2)-2 . \operatorname{Rc} 3 \times P g 3(+w P g 2,-w Q g 2)$
\& 1.Kc5-d4 Qg2-d5\#
c) $-1 . \mathrm{Sf} 4 \times \operatorname{Pg} 2(+\mathrm{wPg} 2,-\mathrm{bSg} 2)-2 . \operatorname{Sh} 3 \times \mathrm{Pf} 4(+\mathrm{wPf} 2,-\mathrm{wQf} 2)$
\& 1.Sh3xf2(Qd1) Qd1-d7\#

Cornel Pacurar,
Toronto, April 3rd, 2016

Graffiti in Black

by Sébastien Luce \in Adrian Storisteanu
"Graffiti is beautiful; like a brick in the face of a cop" - Hunter S. Thompson

ARTICLES

Wall on the Rook on the Wall [Adrian Storisteanu, 1985]

Sébastien Luce \& Adrian Storisteanu

If it takes more than 5 minutes, it's not graffiti. - Mint \& Serf (MIRF)

This article emerged in an ad-hoc burst of inspiration shared virtually (long-distance and late-at-night). It started with Sébastien looking too closely at a recent problem of Tadashi Wakashima:

GR1 Tadashi Wakashima

F3276 The Problemist Jan. 2016

ser- $\neq 27$ enemy sentinels
眼 $=$ locust (L)
1.Lxd2-c3 2.Lxd4-e5(+c3) 3.Lxf4-g3(+e5) 4.Lxe5-d6(+g3) 5.L×d3-d2(+d6) 6.Lxe3-f4(+d2) 7.L×d2-c1(+f4) 8.L×f4-g5 9.L×g3-g2(+g5) 10.L×g5-g6(+g2) 11.Lxe4-d3(+g6) 12.L×c3-b3(+d3) 13.Lxd3-e3(+b3) 14.Lxb3-a3(+e3) 15.L×d6-e7(+a3) 16.Lxe3-e2(+e7) 17.L×f3-g4(+e2) 18.L×e2-d1(+g4) 19.L×g4-h5 20.L×g6-f7(+h5) 21.Lxf2f1(+f7) 22.L×g2-h3 23.L×h5-h6(+h3) 24.Lxh3-h2(+h6) 25.L×h6-h7(+h2) 26.L×h2-h1(+h7) 27.L×h7-h8 \neq. (Actually this one also works in a symmetrical setting - the bK on e8, with a slightly different solution.)

Sébastien noticed right away the possibilities available in
this setup: 'moving' the bPs around through the combined characteristics of locust and enemy-pawn sentinels, for a basic mate pattern (by necessity on the eighth line) requiring just two 'self'-blockings. His first attempts were directed, quite naturally for a records fan, towards a longer sequence: GR2 below, with a pair of black Ls (one fully orthodox, the other turned on its head) - bookends holding the white L .

Ars longa. (Indeed - is it possible to go even farther?)

GR2 Sébastien Luce

ser- $\ddagger 39$ enemy sentinels
1.L×d2-c2(+e2) 2.L×d3-e4(+c2) 3.Lxf4-g4(+e4) 4.Lxg2g1(+g4) 5.L×f2-e3 6.L×e4-e5(+e3) 7.L×d4-c3(+e5) 8.L×c4c5(+c3) 9.Lxe3-f2(+c5) 10.L×e2-d2(+f2) 11.L×c2-b2(+d2) 12.Lxc3-d4(+b2) 13.Lxe5-f6(+d4) 14.L×d4-c3(+f6) 15.L×c5-c6(+c3) 16.L×c3-c2(+c6) 17.L×d2-e2(+c2) 18.L×f2-g2(+e2) 19.Lxf3-e4(+g2) 20.Lxc6-b7(+e4) 21.L×b2-b1(+b7) 22.Lxc2-d3 23.Lxe2-f1(+d3) 24.L×g2-h3 25.Lxg4-f5(+h3) 26.Lxf6-f7(+f5) 27.Lxf5-f4(+f7) 28.Lxe4d4(+f4) 29.L×d3-d2(+d4) 30.L×d4-d5(+d2) 31.L×d2d1 (+d5) 32.Lxd5-d6 33.Lxf4-g3(+d6) 34.Lxd6-c7(+g3) 35.L×g3-h2(+c7) 36.Lxh3-h4(+h2) 37.Lxh2-h1(+h4) 38.L×h4-h5 39.L×f7-e8(+h5) \neq.

ARTICLES

Wall on the Rook on the Wall II [Adrian Storisteanu, 1999]

Now (surely) length (in itself) does not matter. Art (on its own) just might. Here's more (readily made) objets trouvés. The choices, quite unlike Duchamp's. Like, how about a pair of sunglasses? A pair of black diamonds?!

ser- $\neq 26$ enemy sentinels

ser- $\neq 19$ enemy sentinels

GR3: 1.Lxf3-g2(+e4) 2.Lxe4-d5(+g2) 3.L×c4-b3(+d5) 4.Lxd5-e6(+b3) 5.Lxg4-h3(+e6) 6.L×g3-f3(+h3) 7.Lxg2h1(+f3) 8.Lxf3-e4 9.Lxe6-e7(+e4) 10.Lxe4-e3(+e7) 11.L×d4-c5(+e3) 12.Lxe3-f2(+c5) 13.L×f4-f5(+f2) 14.L×d3c2(+f5) 15.L×f5-g6(+c2) 16.L×c2-b1(+g6) 17.Lxb3-b4 18.L×c5-d6(+b4) 19.Lxb4-a3(+d6) 20.L×c3-d3(+a3) 21.L×d6-d7(+d3) 22.L×d3-d2(+d7) 23.L×f2-g2(+d2) 24.L×g6-g7(+g2) 25.L×g2-g1(+g7) 26.L×g7-g8 \neq

GR4: 1.L×f5-g6(+e4) 2.Lxf6-e6(+g6) 3.Lxe4-e3(+e6) 4.Lxe6-e7(+e3) 5.Lxe3-e2(+e7) 6.Lxc2-b2(+e2) 7.Lxe2f2(+b2) 8.L×d4-c5(+f2) 9.L×g5-h5(+c5) 10.L×g6-f7(+h5) 11.Lxe7-d7(+f7) 12.L×d3-d2(+d7) 13.Lxc3-b4(+d2) 14.L×c5-d6(+b4) 15.Lxb4-a3(+d6) 16.L×d6-e7(+a3) 17.L×f7-g7(+e7) 18.L×g4-g3(+g7) 19.L×g7-g8(+g3) $=$.
(How about an intermediate diversion? Two echo mates realized with twins - GR5: a) $1 . \mathrm{L} \times \mathrm{c} 3-\mathrm{d} 4(+\mathrm{b} 2) 2 . \mathrm{L} \times \mathrm{b} 2-$ a1(+d4) 3.L×d4-e5 4.Lxe3-e2(+e5) 5.L×c4-b5(+e2) 6.L×b3b2(+b5) (a first wL rundlauf) 7.L×c2-d2(+b2) 8.L×e2f2(+d2) 9.L×d2-c2(+f2) 10.L×f2-g2(+c2) 11.L×g3-g4(+g2) 12.L×f4-e4(+g4) 13.L×c2-b1(+e4) 14.L×b2-b3 15.L×b5b6(+b3) 16.L×b3-b2(+b6) (a second one) 17.L×b6-b7(+b2)
18.Lxb2-b1(+b7) 19.Lxe4-f5 20.Lxf3-f2(+f5) 21.Lxf5f6(+f2) 22.L×f2-f1(+f6) 23.L×g2-h3 24.L×g4-f5(+h3) 25.L×f6-f7(+f5) 26.L×f5-f4(+f7) 27.Lxe5-d6(+f4) 28.L×f4g3(+d6) 29.Lxd6-c7(+g3) 30.Lxg3-h2(+c7) 31.Lxh3h4(+h2) 32.L×h2-h1(+h4) 33.L×h4-h5 34.L×f7-e8(+h5) \neq; b) 1.Lxf4-e4(+g4) 2.Lxg4-h4(+e4) 3.Lxe4-d4(+h4) 4.Lxc4b4(+d4) 5.Lxb3-b2(+b4) 6.L×b4-b5(+b2) 7.L×b2-b1(+b5) 8.L×c2-d3 9.L×d4-d5(+d3) 10.L×d3-d2(+d5) 11.L×c3b4(+d2) 12.L×b5-b6(+b4) 13.L×b4-b3(+b6) 14.L×b6b7(+b3) 15.Lxb3-b2(+b7) 16.L×d2-e2(+b2) 17.Lxb2a2(+e2) 18.Lxe2-f2(+a2) 19.L×e3-d4(+f2) 20.L×d5-d6(+d4) 21.L×d4-d3(+d6) 22.L×d6-d7(+d3) 23.L×d3-d2(+d7) 24.L×f2-g2(+d2) 25.L×f3-e4(+g2) 26.L×g2-h1(+e4) 27.Lxe4-d5 28.L×d2-d1(+d5) 29.Lxd5-d6 30.L×g3-h2(+d6) 31.Lxd6-c7(+h2) 32.Lxb7-a7(+c7) 33.L×a2-a1(+a7) 34.L×a7-a8 $=$.)

ser- $\ddagger 34$ enemy sentinels

ser- $\neq 22$ enemy sentinels
b) $0 .\left\{\begin{array}{l}\{ \\ \mathrm{b} \\ \mathrm{b} \\ 2 \rightarrow \mathrm{~g} 4 \\ 4\end{array}\right.$

It is now clear that, at one point, Sébastien has made yet another pas of the faux kind. Namely, deciding to show a couple of his sketches to Adrian... An arrow is quickly shot back with the reply e-mail-GR6: 1.L×c3-b4 2.Lxe4-f4(+b4) 3.Lxe5-d6(+f4) 4.Lxe6-f6(+d6) 5.L×f4-f3(+f6) 6.Lxe3d3(+f3) 7.L×d6-d7(+d3) 8.L×d3-d2(+d7) - the first selfblock (weirdly) done. 9.L×e2-f2(+d2) 10.L×d2-c2(+f2). Seemingly starting to bring a hurdle to g7: 11.L×f2-g2(+c2) 12.L×g3-g4(+g2) 13.L×g2-g1(+g4) 14.L×g4-g5 - oops, now must bring another P onto ' g ' (and lift it to $g 7$). 15.L×f6-

ARTICLES

[Adrian Storisteanu, 2016]
$\mathrm{e} 7(+\mathrm{g} 5)$ 16.Lxb4-a3(+e7) - turns out that it was all for the second self-block's sake... The real finale in ' g ': 17.L×f3g3(+a3) 18.L×g5-g6(+g3) 19.L×g3-g2(+g6) 20.L×g6$\mathrm{g} 7(+\mathrm{g} 2) 21 . \mathrm{L} \times \mathrm{g} 2-\mathrm{g} 1(+\mathrm{g} 7) 22 . \mathrm{Lg} 1 \times \mathrm{g} 7-\mathrm{g} 8 \neq$.

As you'd expect, a graphical dedication follows swiftly:
GR7 Sébastien Luce
dedicated to Adrian

ser- $\neq 24$ enemy sentinels
1.L×d3-e4 2.L×f3-g2(+e4) 3.L×f2-e2(+g2) 4.L×d2-c2(+e2) 5.Lxe4-f5(+c2) 6.Lxf4-f3(+f5) 7.Lxf5-f6(+f3) 8.Lxf3f2(+f6) 9.L×g2-h2(+f2) 10.L×e5-d6(+h2) 11.L×d4-d3(+d6) 12.L×d6-d7(+d3) 13.L×d3-d2(+d7) 14.Lxe3-f4(+d2) 15.L×d2-c1(+f4) 16.L×f4-g5 17.L×f6-e7(+g5) 18.L×e2e1 (+e7) 19.L×f2-g3 20.L×g5-g6(+g3) 21.L×g3-g2(+g6) 22.L×g6-g7(+g2) 23.L×g2-g1(+g7) 24.L×g7-g8 \neq.

Next, Adrian (evidently just as inspired) proposes a series of very visual art pieces with chess pieces. Their style belongs to what could be best described as The More-or-Less Symmetrical School of Applied Art.

GR8: 1.Lxe3-e4 2.Lxe5-e6(+e4) 3.Lxe4-e3(+e6) 4.Lxe6e7(+e3) 5.Lxe3-e2(+e7). Now breaking the symmetry: 6.Lxd2-c2(+e2) 7.Lxc3-c4(+c2) 8.Lxe2-f1(+c4) 9.Lxf2-f3 10.L×f4-f5(+f3) 11.L×f3-f2(+f5) 12.L×c2-b2(+f2) 13.L×f2g2(+b2) 14.Lxb2-a2(+g2) 15.L×g2-h2(+a2) 16.L×g3f4(+h2) 17.L×f5-f6(+f4) 18.L×f4-f3(+f6) 19.Lxf6-f7(+f3) 20.L×f3-f2(+f7) 21.L×d4-c5(+f2) 22.L×c4-c3(+c5) 23.L×c5-
c6(+c3) 24.L×c3-c2(+c6) 25.L×c6-c7(+c2) 26.L×c2-c1(+c7) 27.L×c7-c8 \neq.

GR9 Adrian Storisteanu

ser- $=17$ enemy sentinels

GR9: 1.Lxc3-b4 2.Lxd4-e4(+b4) 3.Lxb4-a4(+e4) 4.Lxe4$\mathrm{f} 4(+\mathrm{a} 4) 5 . \mathrm{L} \times \mathrm{f} 6-\mathrm{f} 7(+\mathrm{f} 4) 6 . \mathrm{L} \times \mathrm{f} 4-\mathrm{f} 3(+\mathrm{f} 7) 7 . \mathrm{Lxg} 2-\mathrm{h} 1(+\mathrm{f} 3)$ 8.L×f3-e4 9.Lxe5-e6(+e4) 10.Lxe4-e3(+e6) 11.Lxe6e7(+e3) 12.Lxe3-e2(+e7) 13.Lxb2-a2(+e2) 14.L×a4-a5(+a2) 15.L×a2-a1(+a5) 16.L×a5-a6 17.L×b7-c8(+a6) \neq.

GR10 Adrian Storisteanu

ser- $\neq 17$ enemy sentinels
1.Lxe5-e6 2.Lxf6-g6(+e6) 3.L×g5-g4(+g6) 4.Lxf3-e2(+g4) 5.L×g4-h5(+e2) 6.L×g6-f7(+h5) 7.Lxe6-d5(+f7) 8.L×d4d3(+d5) 9.Lxc3-b3(+d3) 10.L×d5-e6(+b3) 11.Lxe2-e1(+e6) wL rundlauf 12.L×e6-e7 13.L×b4-a3(+e7) 14.L×b3-c3(+a3) 15.L×c6-c7(+c3) 16.L×c3-c2(+c7) 17.L×c7-c8(+c2) $=$.

ARTICLES

Graffiti Alley, Toronto
[Credit: Cornel Pacurar, 2014]

Problems GR2 - GR13 are original for the Bulletin.

Turning the corner, two problems in two-solution form: echoes (bien sûr) in one, mate on the same square at the end of different journeys in the other.

ser- $\ddagger 27$ enemy sentinels 2 solutions

ser- $\neq 18$ enemy sentinels 2 solutions

GR11: I. 1.Lxe4-f5(+d3) 2.L×d3-c2(+f5) 3.Lxd2-e2(+c2) 4.L×c4-b5(+e2) 5.L×b2-b1(+b5) 6.L×c2-d3 7.L×d4-d5(+d3) 8.L×d3-d2(+d5) 9.L×d5-d6(+d2) 10.L×d2-d1(+d6) 11.L×e2f3 12.Lxe3-d3(+f3) 13.Lxf3-g3(+d3) 14.Lxd6-c7(+g3) 15.L×c3-c2(+c7) 16.L×f2-g2(+c2) 17.L×g3-g4(+g2) 18.L×f5-e6(+g4) 19.L×g4-h3(+e6) 20.L×e6-d7(+h3) 21.L×d3-d2(+d7) 22.L×c2-b2(+d2) 23.L×b5-b6(+b2) 24.Lxb2-b1(+b6) 25.Lxb6-b7 26.L×g2-h1(+b7) 27.Lxb7a8 \neq; II. 1.L×d4-d5(+d3) 2.L×e4-f3(+d5) 3.L×d5-c6(+f3) 4.L×f3-g2(+c6) 5.L×f2-e2(+g2) 6.L×d2-c2(+e2) 7.L×d3e4(+c2) 8.Lxg2-h1(+e4) 9.Lxe4-d5 10.Lxc6-b7(+d5) 11.Lxb2-b1 (+b7) 12.Lxc2-d3 13.L×d5-d6(+d3) 14.L×d3d2(+d6) 15.L×e3-f4(+d2) 16.L×d6-c7(+f4) 17.L×f4-g3(+c7) 18.L×c3-b3(+g3) 19.Lxc4-d5(+b3) 20.L×d2-d1 (+d5) 21.Lxd5-d6 22.Lxg3-h2(+d6) 23.Lxe2-d2(+h2) 24.Lxd6d7(+d2) 25.L×d2-d1(+d7) 26.L×b3-a4 27.L×d7-e8(+a4) $=$.

GR12: I. 11.L×c2-b1(+e4) 2.L×e4-f5 3.Lxf6-f7(+f5) 4.L×f5-f4(+f7) 5.L×g5-h6(+f4) 6.L×g6-f6(+h6) 7.L×f4f3(+f6) 8.L×e2-d1(+f3) 9.L×f3-g4 10.L×e6-d7(+g4) 11.L×d2-d1(+d7) 12.L×g4-h5 13.Lxh6-h7(+h5) 14.L×h5h4(+h7) 15.L×f6-e7(+h4) 16.L×d7-c7(+e7) 17.L×c3-c2(+c7) 18.L×c7-c8(+c2) \neq; II. 1.Lxe6-e7(+e4) 2.L×e4-e3(+e7)
3.Lxc3-b3(+e3) 4.Lxc2-d1(+b3) 5.Lxe2-f3 6.Lxf6-f7(+f3 7.L×g6-h5(+f7) 8.L×g5-f5(+h5) 9.Lxf3-f2(+f5) 10.Lxe3d4(+f2) 11.L×d2-d1(+d4) 12.L×d4-d5 13.L×b3-a2(+d5) 14.Lxd5-e6(+a2) 15.Lxf5-g4(+e6) 16.Lxe6-d7(+g4) 17.L×g4-h3(+d7) 18.Lxd7-c8(+h3) $=$.

To end the article (we're running out of wall), here is a last-minute graffito inspired by a 'real' graffito, Adrian's own Wall on the Rook on the Wall. We now have no less than a Locust on (top of) the Wall on the Rook on the Wall (not to mention there is a bK somewhere in there too):

GR13 Sébastien Luce

ser- $\ddagger 24$ enemy sentinels
1.L×g3-h2(+e5) 2.Lxe5-d6(+h2) 3.Lxd3-d2(+d6) 4.Lxe3f4(+d2) 5.Lxe4-d4(+f4) 6.Lxc4-b4(+d4) 7.Lxd6-e7(+b4) 8.L×b4-a3(+e7) 9.L×c3-d3(+a3) 10.L×d4-d5(+d3) 11.L×f3g2(+d5) 12.L×d5-c6(+g2) 13.L×g2-h1(+c6) 14.L×h2-h3 15.L×g4-f5(+h3) 16.Lxf4-f3(+f5) 17.L×f5-f6(+f3) 18.L×f3f2(+f6) 19.Lxf6-f7(+f2) 20.Lxf2-f1(+f7) 21.Lxd3-c4 22.L×c6-c7(+c4) 23.L×c4-c3(+c7) 24.L×c7-c8(+c3) \neq.

While no groundbreaking developments were unearthed here, the material proved well suited for a bit of playful form(al) experimentation. Hat tip to Tadashi Wakashima. While the paint is drying, if you have any comments or ideas please take five minutes to contact the authors: luceechecs AT gmail DIT com, adrianstori AT gmail DOT com.

Clichy \& Toronto
February 2nd, 2016

The Elvis Effect
 Multiple Potential King Pairs in Chess Rebuses

by Jeff Coakley G Andrey Frolkin

ABOUT THE CHESS REBUS

The birth of the chess rebus took place on a dark Kiev night in 1982. The idea arose in a dream by co-author Andrey Frolkin. Most of the early work on these problems was done jointly with Andrei Kornilov. Sadly, this good friend departed our world in 2011.

Other rebus composers include Dmitry Baibikov, Mikhail Kozulya, Thierry Le Gleuher, Henri Nouguier, Vasile Tacu, and Anatoly Vasilenko. There is still much to be discovered in this largely uncharted territory. The total number of rebuses published so far is probably less than 60. This article raises the count by 13 .

THE ELUIS EFFECT
 MULTIPLE POTENTIAL KING PAIRS
 IN CHESS REBUSES

Jeff Coakley \& Andrey Frolkin

In most chess rebuses, it is easy to determine which letters are the kings because there is only a single pair of letters with one upper case and one lower case. This article explores various ways in which the retro content of rebuses can be increased with the use of multiple potential king pairs.
Our collaboration on this project began a few months ago with a discussion of the following problem, which aimed to complicate the solver's task by including two pairs of letters for consideration as kings.

EE-1
 Jeff Coakley
 "Crowns"

Each letter represents a different type of piece. Upper case is one colour, lower case is the other. Determine the position.

The stipulation is the same for all the problems in this article. Where possible, also determine the last move. We hope you enjoy solving the puzzles before looking at the detailed solutions given at the end. That's half the fun, right?

At some point in our conversation, a suggestion was made that we further increase the level of difficulty by composing a rebus with three potential king pairs. And as they say, we were off to the races.

Rebuses with two potential king pairs are not new. There are several examples, some from 1982-83 in which the orientation of the board was unknown. But often it could be seen quickly that one of the pairs was not the kings. For example, if the two letters were adjacent.

As far as we know, the use of three potential king pairs breaks new ground in the land of rebuses.
Of course, instead of starting with three, we immediately jumped ahead to rebuses with five potential king pairs. It was already obvious where we were headed.

The first success was a position with 18 pieces, five "king pairs" plus eight pawns. Then the goal was to reduce the number of pawns. Eventually we got down to three. Problem 2.

Somewhere along the line, it was decided to name the theme of three or more king pairs after "the King". We call it the Elvis effect.

Presley
Antoine Duff 2016

EE-2 Andrey Frolkin Jeff Coakley
"Presley"

EE-3 Andrey Frolkin
Jeff Coakley
"Hound Dog"

As you may have guessed, the real target was two pawns, which initially seemed impossible. But sometimes impossible things happen. Problem 3 has twelve pieces. Six potential king pairs!

Elvis
Nina Omelchuk 2016

Next we turned our attention to pawnless positions. Problem 4 falls in this category, with four potential king pairs.

The lettering in this rebus, dedicated to "the King", demonstrates a flaw in the alphabet. A lower case L and an upper case i look identical in many standard fonts. That can be very confusing for solvers. The difficulty discerning the difference between these two letters is not restricted to rebuses. How about a password that contains the sequence "II"? Is that L/i, i/L, or number 11?

Diagram 4 uses a font in which the difference is more pronounced. Later in the article, another approach to solving the L/i problem is given.

EE-4

Andrey Frolkin Jeff Coakley "Elvis"

EE-5 Andrey Frolkin
Jeff Coakley
"Kings"

Special thanks to Antoine Duff and Nina Omelchuk for their artistic contributions. Antoine's drawing and Nina's painting are the perfect images of the Elvis effect in action. Feel free to solve puzzles 2 and 4 directly from the pictures.

In problem 5 above, we have the ultimate in pawnlessness. Five letters, five king pairs. Surprisingly perhaps, it could only be achieved in an expanded open setting, unlike the usual crowded clusters in most rebuses.

Brute Force or Logical Reason?

We don't recommend using the brute force method to solve these puzzles. In a six letter rebus, there are 1440 different ways to assign the pieces ($6!\times 2$). If the kings are known, there are still 240 ways to assign the other pieces.
1440

With the first slate of tasks completed, our investigation shifted to other multi-king pair settings. One amusing kind of puzzle is the full board rebus. These problems are not actually examples of the Elvis effect, which requires three king pairs. But they do have two pair.
In a position with 32 pieces, certain deductions are very easy. But maybe there is still a challenge in deciphering these messy messages.

EE-6
Andrey Frolkin
Jeff Coakley
"Bowels of Vowels"

Now it's time to get serious. The most productive part of our project has been incorporating additional retro concepts into multi-king pair rebuses. The final six problems have a lot of stump potential.

Number 8 on our playlist is a real rocker.

EE-7

Andrey Frolkin
Jeff Coakley
"Double D"

EE-8
Andrey Frolkin
Jeff Coakley
"Rock 'n' Roll"

Elvis Presley Chess Set by Wood Expressions, Inc. woodexpressions.com

The next trio of presleys (rebuses with five potential king pairs) share the common characteristic of "no letters on ranks $1,2,7,8$ ". This feature greatly reduces the use of pawns for establishing colours.

Problem 11 is dedicated to Moscow composer Andrei Kornilov (1944-2011). It is based on a retro concept conceived by him twenty years ago. In our opinion, this is the most profound puzzle in the article. Thanks, Andrei.

The diagram also introduces a solution to "alphabetic L/i confusion". It contains seven letters, with five normal pairs plus one instance of upper case L and one instance of lower case i. The ' L ' and ' i ' are the same kind of piece, and together comprise a single pair.

EE-10

Andrey Frolkin
Jeff Coakley
"Las Vegas"

EE-11

 Andrey Frolkin Jeff Coakley"Kornilov"

L and i are the same kind of piece.

REBUS TYPES

It should be noted that the problems in this article are just one type of rebus, in which six letters are used, upper case being one colour and lower case the other. There are also rebuses with only upper case letters that give no indication about colours, as well as rebuses with twelve letters. But we will save those for another day.

Hollywood may spin you for a loop, but an "exclusive trip" to Memphis is sure to bring a smile.

EE-12
 Andrey Frolkin
 Jeff Coakley
 "Hollywood"

EE-13

Andrey Frolkin
Jeff Coakley
"Memphis"

Chess rebuses, the sudoku-style puzzle for enthusiasts of the royal game.

EE-1

Jeff Coakley
"Crowns"

EE-1 "CROWNS"

There are two potential king pairs, W/w and S/s. These are the only letters with two instances, one upper case and one lower case.
If S is king, O cannot be a queen or bishop because both kings would be in check. O cannot be a pawn because there is an 'o' on the 8th rank. For the same reasons, C and N cannot be a queen, bishop, or pawn. It is impossible to assign those three pieces to the remaining two letters (R, W), so S is not the king.

Therefore $\mathrm{W}=$ king. As above, N and O cannot be a queen, bishop, or pawn. These two letters must be knight and rook. If N is rook, then both kings are in check, which means that $\mathrm{N}=$ knight and $\mathrm{O}=$ rook.

C cannot be a queen because both kings would be in check. It cannot be a pawn either (C on 8th rank), so $C=$ bishop. That leaves R and S. If R is queen, then the lower case king on $f 3$ is in an impossible double check. Thus, $R=$ pawn and $S=$ queen.

The colour of the pieces is determined by the pawn on b7 and bishop on a8. This is only possible if they are white pieces.

A rare rebus in which neither king is in check.
The authors are grateful to Grigory Popov and the website superproblem.ru. Our discussion of multiple potential king pairs came about after each of us had rebuses published in his Saturday column.

EE-2
 Andrey Frolkin
 Jeff Coakley

"Presley"

$P=$ pawn
$\mathrm{R}=$ queen
$\mathrm{E}=$ bishop
$\mathrm{S}=$ knight
L = king
$Y=$ rook

EE-2 "PRESLEY"

As usual, there are various ways to logically deduce the solution. We give the reasoning that we consider the most direct.
There are five potential king pairs. The P's are pawns because they are the only letter not on the 1st rank.
The E's are not kings because they are sandwiched along the 1st rank by the other four letters (rEs and LeY). It is impossible to assign pieces to those four letters without placing both kings in check or placing one king in an impossible double check.
The S's are not kings for a similar reason. S is attacked along the 3rd rank by two letters (I, y) and 's' is attacked along the 1st rank and e-file by the other two letters (E, R). Any assignment of queen and rook is an illegal position.

Proving that R is not a king is trickier. The ' r ' on $b 1$ is diagonally adjacent to a pawn of the opposite colour on c2. If ' r ' is a king, then that pawn cannot be black because it would be checking the king on b1 without having a legal move on the previous turn (b3 c3 d3 are occupied). So, if ' r ' is a king, then the P on $c 2$ is white, and the p on $f 4$ is a black pawn checking the white R on e3.
If R is in check from a pawn, it cannot be in check from a queen or rook on d3 or e1, and ' r ' cannot be in check from a queen or rook on c 1 . Which means that it is impossible to assign queen and rook to the remaining letters without creating an illegal double check or placing both kings in check. Therefore R is not king.
A similar argument proves that Y is not king. The ' y ' on $d 3$ is diagonally adjacent to two pawns of the opposite colour on c 2 and c 4 . If ' y ' is a king, then it is in check from one of those pawns (from a black pawn on c 4 since a white pawn cannot give check from the 2nd rank). So 'y' cannot also be in check from a queen or rook on c3 or e3. And ' Y ' cannot be in check from a queen or rook on $g 1$. That makes it impossible to assign queen and rook to the other letters. Therefore Y is not king.

By the process of elimination, $L=$ king. The ' l ' on $b 3$ is diagonally adjacent to two pawns of the opposite colour on c2 and c4. It must be in check from one of them (from a black pawn on c4 since a white pawn cannot give check from the 2nd rank). So ' 1 ' cannot also be in check from a queen or rook on c3. And L cannot be in check from a queen or rook on e1 or g1. This implies that S and E are bishop and knight. The E on $c 1$ cannot be a knight because it would be checking the ' 1 ' on b3. Therefore, $E=$ bishop and $S=$ knight.
R and Y must be queen and rook. The ' y ' on d3 cannot be a queen because it would be checking the L on $f 1$. Thus, $Y=$ rook and $R=$ queen.

The last move was by the black pawn on c4. It may or may not have been a capture. This is indicated by the symbol > (rather than - or x).

EE-3

Andrey Frolkin

Jeff Coakley
"Hound Dog"

$\mathrm{H}=$ king
$\mathrm{O}=$ knight
U = pawn
$\mathrm{N}=$ rook
D = bishop
G = queen

EE-3 "HOUND DOG"

There are six potential king pairs! But it is easy to see that $U=$ pawn since it is the only letter not on the 1st or 8th rank.

As is frequently the case, determining which letters are king is the primary task.
If O is king, then 'o' on c8 is attacked on a rank or file by H, N and D , and the O on b4 is attacked on a file by ' g '. Any assignment of queen and rook will either place both kings in check or place one king in an impossible double check. O is not king.

A similar argument applies to the other four candidates: D, G, H, N. They are each attacked by four other letters on a rank or file. But in each case, a possible double check is "thinkable" by means of a pawn
 promotion.

If D is king and O is rook, the promotion ...cxb1= $Q+$ is impossible since ' d ' on $f 8$ would also be in check from G on f 1 . D is not king.

If G is king and D is rook, the promotion ...fxe1=Q+ is impossible since ' g ' on b1 would also be in check from D on $\mathrm{c} 1 . \mathrm{G}$ is not king.

If N is king and H is rook, the promotion exf8=Q+ is impossible since N on e8 would also be in check from pawn u on $d 7$. N is not king.
So $H=$ king. With $N=$ rook, the double check exf1=Q++ is possible. So $G=$ queen. The promotion establishes that upper case letters are black. Note that N cannot be the queen since both kings would be in check (H on a8 from h1).
If O is a bishop, then the white king is in triple check. Therefore, $O=$ knight and $D=$ bishop.

$E=$ king $\quad S=$ queen
L = rook
$\mathrm{V}=$ knight
I = bishop
S = queen
White = upper case
Black = lower case last move: ...exd1=Q++

EE-5 Andrey Frolkin

"Kings" Jeff Coakley

$K=$ rook
S = knight
I = queen
$N=$ king
G = bishop

EE-4 "ELVIS"

There are four potential king pairs (all letters except L). There are no pawns because there is an instance of each letter on the 1st rank

The $1 / /$'s are attacked on the 1st rank by the other four letters. Any assignment of queen and rook yields illegal checks. $1 / i$ is not king.
Similarly, the V's are attacked on a rank or file by the other four letters. V is not king.

Eliminating the royal aspirations of the S's is slightly more complicated. They are also attacked on a rank or file by the other four letters, but a double check by the promotion ...dxe1=Q++ is thinkable, with E and V as rook and queen. However, since either L or ' i ' must be a knight, there will be a third check, either on d1 from b2 or on f3 from g1,
 making the position illegal. S is not king.

That means that $E=$ king. The E's are also attacked on a rank or file by the other four letters, but the double check ...exd1=Q++ is legal with $L=$ rook and $S=$ queen. The 'e' on c3 would also be in check if L were the queen. The promotion shows that Black is the lower case letters. The I on b1 cannot be a checking knight. Therefore, $\mathrm{I}=$ bishop and $\mathrm{V}=$ knight.

EE-5 "KINGS"

Five potential king pairs. There are no pawns because all letters appear on the 1st or 8 th rank.

The solution is very similar to the earlier problems. All five letters are attacked along a rank or file by the other four letters. The only way to create a legal position is to assign queen and rook to K and I with $\mathrm{N}=$ king. Both kings will be in check if K is a queen, so $\mathrm{K}=$ rook and $\mathrm{I}=$ queen. The last move dxc8=Q++ determines the colours.

S cannot be bishop or the black king is in triple check. Therefore $\mathrm{S}=$ knight and $\mathrm{G}=$ bishop.

EE-6

Andrey Frolkin

Jeff Coakley
"Bowels of Vowels"

A = bishop
E = queen
I = knight
$\mathrm{O}=$ pawn
$\mathrm{U}=$ rook
$Y=k i n g$

EE-6 "BOWELS OF VOWELS"

All 32 pieces are on the board, so no captures have been made. It is also obvious that $\mathrm{O}=$ pawn and that White is the upper case letters.

The two potential king pairs are E and Y. One is king and the other is queen.

First we analyze the position with E as king. Consider the three possibilities for A.

If A is a bishop, the E on $e 1$ is in check from ' a ' on $c 3$, and I and U are rook and knight. But there is an illegal check whichever way we assign the letter U. It cannot be a rook and it cannot be knight without
 checking a king. So A cannot be bishop.
$(16+16)$

If A is a rook, then ' e ' on $f 8$ is in a check from the rook on d8. There is no legal last move by the rook and the discovered check Ne8-f6+ (with U as knight) would mean that the king on e 1 is also in check from a knight on c2. So A cannot be rook.
If A is a knight, the ' e ' on f8 is in check, and I and U are rook and bishop. If I is rook, both kings are in check. If U is rook, then ' e ' is in an impossible double check. So A cannot be a knight. Therefore E is not king.
$Y=$ king and $E=$ queen. Now consider which letters are the knights.
If U is a knight, both kings are in check.
If A is a knight, then Y on $d 5$ is in check by ' a ' on c3, and I and U must be rook and bishop. If U is bishop, both kings are in check. If I is bishop, then Y is in an impossible double check.

Therefore $\mathrm{I}=$ knight, which places ' y ' on d 7 in check. The only possible last move is Nc8-b6+.
A and U are rook and bishop. The black king would be in triple check if A is a rook. So $A=$ bishop and $U=$ rook.

EE-7

Andrey Frolkin

Jeff Coakley

"Double D"

D = pawn
$\mathrm{O}=$ queen
$\mathrm{U}=$ knight
$B=k i n g$
L = rook
$E=$ bishop

White = upper case
Black = lower case
last moves:
1...Rb7-f7+ 2.Nd4-c6+

EE-7 "DOUBLE D"

A full board. No captures. $D=$ pawn. White $=$ upper case. The two potential king and queen pairs are O and B.

If O is king and B is queen, then O on e3 is in an impossible double check from a queen on c5 and pawn on 44 . In fact, the pawn check alone is illegal since it would have to be a capture. Therefore O is not king.
$B=$ king, $O=$ queen, and the black king on $c 5$ is in check from the queen on e3. But there is no legal move by the white queen on the last turn. There had to be a discovered check. The only possibility is $U=$ knight with the last move Nd4-c6+.
That leaves L and E as rook and bishop. But these two letters appear to have no "connection" to the kings. Until we consider Black's move on their previous turn! When the U (knight) at $c 6$ was on $d 4$, the white king was in check from the queen on a8. That second discovered check can only be explained by $L=$ rook and the move ...Rb7-f7+. And E = bishop.

EE-8 "ROCK 'N' ROLL" (See diagrams on next page.)

This is a very solver-unfriendly problem. But a few things are easy enough. $\mathrm{R}=$ pawn, upper case $=$ White, and the three potential king pairs are C, K, L. All pawns are on the board so one of these three letters is also a queen. White is missing one piece and Black is missing two pieces.
One key to solving this rebus is to show that the two missing black pieces were captured on e3 and d3. There are upper case instances of each letter in front of the white pawns (R), which means that at least one of the white rooks has escaped from behind the pawns. This could only happen by means of the cross-captures dxe3 and exd3, temporarily opening a file.

The next useful step is to prove that O is not a rook.
If O is rook and C is king, then $f 4$ is in check from h4. One of the letters L or N will be a bishop or queen, which places the C on f 4 in an impossible double check.
If O is rook and K is king, then N must be a bishop or knight. In either case, both kings will be in check from an N .

If O is rook and L is king, consider the options for N . If N is a bishop, then the 'l' on e5 is in an illegal check since the capture $\operatorname{Bc} 3 x d 4+$ is impossible. If N is a knight, then "l' on g 3 is in check from h 5 . C will be a queen or bishop, placing both kings in check.
Therefore O is not a rook. It must be a bishop or knight.

EE-8
 Andrey Frolkin
 Jeff Coakley
 "Rock ' n ' Roll"

$R=$ pawn
$\mathrm{O}=$ knight
C = king
K = bishop
$\mathrm{N}=$ rook
L = queen

EE-8 "ROCK 'N' ROLL" (continued from previous page)

The major job now is demonstrating that the N's are rooks.
Part 1, show that N is not a knight.
1a) If K is king and N is knight, then both kings are in check (from b3 and 95). N is not knight if K is king.
1b) If L is king and N is knight, then O is a bishop and the L on $g 3$ is in an impossible double check.
1c) If C is king and N is knight, then O is a bishop, and both kings are in check (d 7 from a4, and f4 from h5).
Therefore N is not a knight.
Part 2, show that N is not a bishop.
2a) If K is king and N is bishop, then both kings are in check.
$2 b$) If L is king and N is bishop, then ' l ' on e5 is in an illegal check from
 d4. The last move would have to be the capture $\mathrm{Bc} 3 \mathrm{xd} 4+$.
2c) If C is king and N is bishop, then C on $f 4$ is in an illegal check from g5. The last move would have to be the capture ...Bh6xg5+. This is illegal because the only missing white piece was captured behind the white pawns, as the following argument shows.

With both white bishops (N's) in front of the pawns, it is impossible for both white rooks to also have escaped. Say that White first plays dxe3. This allows Ra1 and Bc1 to escape, but Rh1 cannot get out with Bf1 in the way. And Bf1 can only move after exd3, which closes the door for Rh1. (The "rock ' n ' roll jam".) Since O on d2 is not a rook, we can deduce that the missing white piece is a rook that was captured somewhere on the 1st or 2nd rank.

All of which proves that $\mathrm{N}=$ rook.
With both white rooks in front of the pawns, it is impossible for both white bishops to also have escaped, as explained above. For both rooks to get out, one of the bishops had to be captured on c1 or f1. This means that there is only one white bishop remaining on the board.

There are two white knights on the board, so $\mathrm{O}=$ knight since it is the only upper case letter with two instances besides N . The letters $\mathrm{C}, \mathrm{K}, \mathrm{L}$ are king, queen, and bishop.

If L is king, then both kings are in check. L on $g 3$ from a rook on $g 5$, and ' l ' on e5 from a queen or bishop on $f 4$
If K is king, then both kings are in check from knights on a4 and h 4 .
Thus and hence, $\mathrm{C}=$ king. All that remains is determining queen and bishop for letters K and L . If L is bishop, then C on $f 4$ is in an impossible check from e5. So $L=$ queen, $K=$ bishop, and the last move was ...Qd5-e5+.

EE-9

Andrey Frolkin
Jeff Coakley
"Tupelo"

$\mathrm{T}=$ queen
$\mathrm{U}=\mathrm{king}$
$\mathrm{P}=$ rook
E = knight
L = bishop
$\mathrm{O}=$ pawn

White = upper case Black = lower case last move: ...>b6+

EE-9 "TUPELO"

There are five candidates for king. Each side has 8 O's and one instance of each other letter. If the O's are pawns, then each side is missing a rook, bishop, and knight.
However, it is conceivable that 12 of the 16 O's are promoted pieces, 6 for each side. There are 26 pieces on the board $(13+13)$. With two pawns still on the board (on different files), a total of 6 missing pieces (including two pawns) is exactly enough to account for the captures necessary to promote 12 pawns.

So let's begin by eliminating the possibility that O's are pieces rather than pawns.

If O is a queen, bishop, or knight, then the position is illegal (both kings

$(13+13)$
in check or an impossible double check) no matter which letter is king.
If O is a rook, then there are impossible checks if U or P are king. Things are trickier for the other three letters. If E or L are king, then there is a single check by a rook. But that check could only happen if the last move was a capture (on c3 or h5). That would reduce the number of missing pieces available for capture earlier, making it impossible to have 12 promoted pieces. So O cannot be a rook if E or L are king. That leaves the possibility of T being king, with T on $b 5$ in check from $b 6$. But then consider the letters LEP. One of them must be a queen or bishop, which would create a second illegal check. So O cannot be a rook regardless of which letter is king.
$\mathrm{O}=$ pawn, as expected. And White is upper case as it would take too many captures for all the pawns to pass each other.

Neither E nor P can be king because they would be in check from two pawns. L is not king because both kings would be in check by a pawn. The two remaining candidates for king are T and U. If T is king, then b5 is in check from c6. But one of the letters LE P will be a queen or bishop, placing both kings in check. So T is not king.
$\mathrm{U}=$ king and c 5 is in check from b6. Which means the letters TPEL cannot be pieces which give check. The only assignment of pieces resulting in a legal position is $E=$ knight, $P=$ rook, $L=$ bishop, $T=$ queen.

EE-10
 ndrey Frolkin
 Jeff Coakley

"Las Vegas"

V = pawn
$\mathrm{E}=$ knight
G = queen
A = rook
S = king
$\mathrm{L}=$ bishop

White = lower case Black = upper case last move: Nc5-a4+

EE-10 "LAS VEGAS"

The same basic scenario as the previous rebus. There are five potential king pairs plus 16 A's. This time the A's are not pawns!
If the A's were pawns, then E, G, L, and V are not kings because they would be attacked by two pawns. If S is king, c 4 is in check from d5. Any assignment of queen and rook to the other letters ($E G L V$) results in a second illegal check.

So 12 promotions took place, which required 6 captures (because there are still two pawns on the board that are not on the same file). These captures account for all the missing pieces.

$(13+13)$

The A's cannot be queens because additional captures would be needed.
If A is a bishop, then E, G, L, V are not king because they would be in check by two bishops. If S is king, $c 4$ is in an illegal check from d5 because the last move could only be the capture Bxd5+, which would preclude 12 promotions.

If A is a knight, then there is an illegal check by two knights whichever letter is king.
Therefore $A=$ rook. If L is king, then both kings are in check. If E, G, or V are king, then the last move, checking one of the kings, had to be a capture.
Which means that $S=$ king, with c 4 in check from c6. This check could only happen by the discovery Nc5-a4+ or Nc5-e4+. If L is knight, then both kings are in check. So $E=$ knight and the last move was $\mathrm{Nc} 5-\mathrm{a} 4+$. V cannot be a queen or bishop, so $\mathrm{V}=$ pawn. This establishes that the lower case letters are White since it must be a white pawn to avoid checking c4.
L cannot be queen since it would check the king on $c 4 . L=$ bishop, $G=$ queen.

Counting Kings

Speaking of multiple kings, have you been to Las Vegas? The city has the greatest density of Elvis impersonators in the world.

EE-11

Andrey Frolkin
Jeff Coakley
"Kornilov"

$\mathrm{K}=$ pawn
$\mathrm{O}=$ king
$\mathrm{R}=$ queen
$\mathrm{N}=$ knight
i = bishop
L = rook
$\mathrm{V}=$ pawn

White = lower case Black = upper case last move: Bb6+

EE-11 "KORNILOV"

Another similar setting to the previous two problems. Five potential king pairs plus 16 K 's which are not pawns.
If the K's were pawns, then $\mathrm{L} / \mathrm{i}, \mathrm{N}, \mathrm{R}$, and V are not kings because they would be attacked by two pawns. If O is king, a 5 is in check from b 6 . Any assignment of queen and bishop to the other letters (L/i N R V) results in a second illegal check.

As before, 12 promotions took place, requiring 6 captures, which account for all the missing pieces. The K's cannot be queens because additional captures would be needed.

$(13+13)$

If K is a rook, then $\mathrm{L} / \mathrm{i}, \mathrm{N}$, and O are not king because they would be in check by two rooks. If R or V is king, then the last move, checking one of the kings, had to be a capture, making 12 promotions impossible.
If K is a knight, then there is an illegal check by two knights whichever letter is king
Therefore $\mathrm{K}=$ bishop. L/i, N, R, and V are not kings because they would be attacked by at least two bishops. So we quickly and easily reach the conclusion that $\mathrm{O}=$ king.
The O on a5 is in check from b6, therefore N, L/i, and V cannot be a queen, which leads to the deduction that $R=$ queen.

Here we reach a roadblock of sorts. The three letters L/i, N, V must still be assigned pieces. The choices are rook, knight, and pawn. Any of the three letters can be a pawn. N cannot be rook and L/i cannot be a knight because they would give check.

Consider the consequences of each letter being a pawn.
a) If L / i is a pawn, then the ' i ' on b 4 cannot be white because it would check a5. $\mathrm{L} / \mathrm{i}=$ pawn, White $=$ upper case, $\mathrm{N}=$ knight, $\mathrm{V}=$ rook
b) If N is a pawn, then the N on $g 4$ cannot be white because it would check $f 5$.

$$
\mathrm{N}=\text { pawn, White }=\text { lower case, } \mathrm{L} / \mathrm{i}=\text { rook, } \mathrm{V}=\text { knight }
$$

c) If V is a pawn, then the V on e4 cannot be white because it would check $f 5$.

$$
\mathrm{V}=\text { pawn, White }=\text { lower case }, \mathrm{N}=\text { knight, } \mathrm{L} / \mathrm{i}=\text { rook }
$$

One of these possibilities is the solution. Congratulations if you figured out how to decide which.
At this point, we encounter the genius of Andrei Kornilov. His concept "bishop ratio" is the key to moving forward. A simple count shows that there are 5 lower case bishops on light squares and 3 on dark squares, while there are 4 upper case bishops on each colour. Astoundingly, this difference determines which letter is a pawn. In this position, a legal bishop ratio can only arise from option $\mathrm{c}, \mathrm{V}=$ pawn.

EE-12

Andrey Frolkin
Jeff Coakley
"Hollywood"

H = bishop
O = pawn
$\mathrm{L}=\mathrm{king}$
$Y=$ knight
W = queen
D = rook

In other words, Y is not a bishop. Once we return to reality, the rest of the analysis is straightforward.
Since the two dark square bishops were captured on c1 and f8, the remaining bishops are both on light squares. The only letter with both instances on light squares is H . So $\mathrm{H}=$ bishop.

Next we determine what the Ys are not, and thereby what they are.
If Y is king, then any assignment of queen and rook results in a position where both kings are in check or one king is in an impossible double check. The Y's are attacked on a rank or file by D, L, and W.

If Y is a rook, the remaining letters D, L, W are king, queen, and knight.
If Y is rook and D is king, then both kings are in check, $g 1$ from c 1 , and g 6 from f 7 .
If Y is rook and L is king, then both kings are in check, b8 from f8, and e4 from a8.
If Y is rook and W is king, then the king on g8 is an impossible doube check.
Therefore Y is not a rook. The same argument shows that Y is not a queen. Which enlightens us to $\mathrm{Y}=$ knight. That leaves king, queen, and rook for D, L, W.

If D is king, $g 6$ is in an impossible double check.
If W is king, g 8 is in check from f 7 . D is either queen or rook, attacking d 6 and placing both kings in check.
So $L=$ king, with e4 in check from a8. $D=$ rook because a queen on $g 6$ would be an impossible double check. $\mathrm{W}=$ queen. The last move was the discovered check Kb7>b8+.

The King lives. (Antoine Duff 1999).

EE-13

Andrey Frolkin

Jeff Coakley
"Memphis"

$M=$ pawn	White = upper case
$E=$ king	Black = lower case
$P=$ queen	last move: $R>c 1+$
$H=$ rook	
$I=$ knight	
$S=$ bishop	

EE-13 "MEMPHIS"

Lucky number 13. Another "presley", five potential king pairs. The M and m's are pawns since the other letters appear on the first and last ranks.

Time loop revisited. H cannot be a bishop because the captures necessary to free the light square bishops do not exist. See problem 12 for more explanation. $S=$ bishop because it is the only letter with both instances on light squares. The dark square bishops were captured on c1 and f8.

Three of the assigned upper case letters (P, E, I) are on the 8th rank inside the "black box". A penetrating glance at the pawn structure shows that a white rook could only enter the box by means of the
 cross-captures ...axb6 and ...bxa6. And also that the white king could only enter the box by means of the advance ...b6 followed later by ...a6. We refer to this logical impasse as the "Memphis exclusion". A white rook can be on the 8th rank or a white king can be on the 8th rank, but not both. This also implies that H on c 1 is either a king or a rook (not queen or knight).

If H is king, then E would have to be knight since a queen or rook on a1 would be illegally checking c1. But that would mean that P and I are queen and rook, placing the ' h ' on $f 8$ in an impossible double check. So H is not king. $\mathrm{H}=$ rook.
P is not king because both kings would be in check (from c3 and f8).
I is not king because e4 would be in an illegal check from h 1 .
Therefore $\mathrm{E}=$ king, and a 1 is in check from the rook on c 1 . I is not a queen because it would be checking a8. $\mathrm{I}=$ knight, $\mathrm{P}=$ queen.

Thank you very much.

Jeff Coakley	Nova Scotia, Canada
Andrey Frolkin	Kiev, Ukraine

April 14, 2016

Record Breakers I

by Arno Tüngler

"When facing a difficult task, act as though it is impossible to fail. If you are going after Moby Dick, take along the tartar sauce." - H. Jackson Brown, Jr.

ARTICLES

As four articles containing 296 records in 7 categories have already been published in the last four issues of the Bulletin, it is now high time to show the first record-breakers which have been found in the meantime in the ChessProblems.ca forums.

RB-1 is actually 6 moves shorter than AS-29 in Bulletin 4, page 107, in which Paul had found the following dual: 1.Ka7-a6 11.Kf2×f3(Pf7) 23.Kd7×d8(Bf8) 26.Kb6b5 (dual!) $34 . \mathrm{Ke} 1 \times \mathrm{f} 1(\mathrm{Bc} 8) \quad 47 . \mathrm{Ke} 8 \times \mathrm{f} 8$ 49.Kg8×h7(Ra8) and now 56.Kb6×a5(Pa7) 67.Kxh5(Sg8) etc. As the corrected version also cannot be fully tested by computer, we ask you to check again. The new matrix helped, however, add one move to the 16 units in the same category, as shown in RB-2.

No improvements so far for the series direct mates in Bulletin 5, but several new series self mate tasks are replacing records in Bulletin 6. RB-3 is the only 'orthodox' new record, while the following three problems add length to Circe tasks with 12-14 units

RB-1
Branko Koludrović
Original

ser-! = 111
$(3+12)$
Circe

RB-4

Branko Koludrović
Original

ser-s\# 61
C+ (4+8)
Circe

RB-2
Branko Koludrović
Original

Circe

RB-5

Branko Koludrović
Original

ser-s\# 83
$\mathrm{C}+(4+9)$
Circe

RB-3
Arno Tüngler
Original

ser-s\# 94

RB-6

Branko Koludrović
Original

ser-s\# 95
Circe

ARTICLES

Another series of new records is RB-7 to RB-10, replacing 5 problems first published in Bulletin 7. RB-8 with 13 units adds, amazingly, 21 moves to the former record HZ-23!

Certainly this is just a beginning and so I am looking forward to receiving from you dozens of record-breakers following the articles that have been published so far and will still follow. Anything you send before the end of July will be shown in the next issue of the Bulletin (CPB9, August 2016).

Arno Tüngler

 Bishkek, March 27 ${ }^{\text {th }}, 2016$RB-7
Arno Tüngler
Original

ser-hZa8 $93 \quad \mathrm{C}+(11+1)$
Circe

RB-8
Arno Tüngler
Original

ser-hZa8 114 C+ (12+1)
Circe

RB-9
Arno Tüngler
Original

ser-hZa8 124 C $+(13+2)$

RB-10
Arno Tüngler

ser-hZa5 126 C+ (14+2) Circe

Solutions:

RB-1: 1.Ka8-b7 11.Kf2×f3(Pf7) $23 . \mathrm{Kc} 8 \times \mathrm{d} 8$ (Bf8) $24 . \mathrm{Kd} 8 \times \mathrm{d} 733 . \mathrm{Ke} 1 \times \mathrm{f} 1(\mathrm{Bc} 8) 45 . \mathrm{Ke} 8 \times \mathrm{f} 847 . \mathrm{Kg} 8 \times \mathrm{h} 7(\mathrm{Ra} 8) 64 . \mathrm{Kg} 4 \times \mathrm{h} 5(\mathrm{Sg} 8)$ 80.Kf8×g8 97.Kg5×f6(Rh8) 110.Kc6-c7 111.c5-c6 !=

RB-2: 1.Ka8-b7 12.Kf2×f3(Pf7) $25 . \mathrm{Kc} 8 \times \mathrm{d} 8$ (Bf8) $26 . \mathrm{Kd} 8 \times \mathrm{d} 736 . \mathrm{Ke} 1 \times \mathrm{f} 1$ (Bc8) $49 . \mathrm{Ke} 8 \times \mathrm{f} 851 . \mathrm{Kg} 8 \times \mathrm{h} 7$ (Ra8) $69 . \mathrm{Kg} 4 \times \mathrm{h} 5(\mathrm{Sg} 8)$ 86.Kf8×g8 104.Kg5×f6(Rh8) 118.Kc6-c7 119.c5-c6 !=

RB-3: 1.Kf1-e1 14.Kf5×g4 29.Kf1×g1 $45 . \mathrm{Kg} 4 \times h 362 . \mathrm{Kg} 1 \times \mathrm{h} 178 . \mathrm{Kf5} \times \mathrm{e} 479 . \mathrm{Ke} 4 \times \mathrm{f} 380 . \mathrm{Kf3}-\mathrm{e} 482 . f 4 \times \mathrm{e} 584 . e 6 \times f 785 . f 7-\mathrm{f} 8=\mathrm{R}$ 87.Rd8×d3 88.Rd3-b3 93.d7-d8=Q 94.Qd8-d5 + Qh1×d5 \#

RB-4: 1.Kd6-c7 11.Kg3×f2(Pf7) 17.Ka3×a4(Bc8) $33 . \mathrm{Kd} 8 \times \mathrm{c} 850 . \mathrm{Ka} 4 \times \mathrm{b} 5(\mathrm{Ra} 8) 60 . \mathrm{Kh} 5-\mathrm{h} 661 . \mathrm{Sg} 7-\mathrm{f5}+\mathrm{Ra} 8 \times \mathrm{h} 8(\mathrm{Bc} 1) \#$
RB-5: $1 . \mathrm{Kd6}-\mathrm{c} 715 . \mathrm{Kc} 2 \times \mathrm{b} 2$ (Bf8) $26 . \mathrm{Kg} 8 \times \mathrm{f} 839 . \mathrm{Ka} 3 \times \mathrm{a} 4$ (Bc8) $55 . \mathrm{Kd} 8 \times \mathrm{c} 872 . \mathrm{Ka} 4 \times \mathrm{b} 5(\mathrm{Ra} 8) 82 . \mathrm{Kh} 5-\mathrm{h} 683 . \mathrm{Sg} 7-\mathrm{f} 5+\mathrm{Ra} 8 \times \mathrm{h} 8(\mathrm{Bc} 1) \#$
RB-6: 1.Kc2-d1 13.Kd8×c7 27.Kc2×b2(Bf8) 38.Kg8×f8 51.Ka3×a4(Bc8) 67.Kd8×c8 84.Ka4×b5(Ra8) 94.Kh5-h6 95.Sg7-f5+ Ra8×h8(Bc1) \#
RB-7: $1 . \mathrm{Kb} 1-\mathrm{c} 212 . \mathrm{Kd} 8 \times \mathrm{c} 8(\mathrm{Bf} 1) 21 . \mathrm{Kg} 1 \times \mathrm{f} 130 . \mathrm{Kc} 8 \times \mathrm{b} 8(\mathrm{Sg} 1) 44 . \mathrm{Kb} 1 \times \mathrm{a} 2(\mathrm{Rh} 1) 60 . \mathrm{Ka} \times \times \mathrm{a}(\mathrm{Pa} 2) 76 . \mathrm{Kb} 1 \times \mathrm{a} 293 . \mathrm{Ka} 5 \times \mathrm{b} 4(\mathrm{Ra} 1)$ Ra1-a8 Z

RB-8: 1.Kb1-c2 $15 . \mathrm{Kd} 8 \times \mathrm{c} 8(\mathrm{Bf} 1) 27 . \mathrm{Kg} 1 \times \mathrm{f} 139 . \mathrm{Kc} 8 \times \mathrm{b} 8(\mathrm{Sg} 1) 56 . \mathrm{Kb} 1 \times \mathrm{a} 2(\mathrm{Rh} 1) 75 . \mathrm{Ka} 6 \times \mathrm{a} 5(\mathrm{~Pa} 2) 94 . \mathrm{Kb} 1 \times \mathrm{a} 2114 . \mathrm{Ka} 5 \times \mathrm{b} 4(\mathrm{Ra} 1)$ Ra1-a8 Z

RB-9: 1.Ke8-f8 11.Ke1-d1 12.f7×e6 25.Kd8×c8(Bf1) $37 . \mathrm{Kg} 1 \times f 149 . \mathrm{Kc} 8 \times \mathrm{b} 8(\mathrm{Sg} 1) 66 . \mathrm{Kb} 1 \times \mathrm{a} 2(\mathrm{Rh} 1) 85 . \mathrm{Ka} \times \mathrm{a} 5(\mathrm{~Pa} 2) 104 . \mathrm{Kb} 1 \times \mathrm{a} 2$ 124.Ka5×b4(Ra1) Ra1-a8 Z

RB-10: 1.Kd8-e8 13.Ke1-d1 $14 . e 6 \times d 5 \quad 27 . K d 8 \times c 8(B f 1) \quad 39 . K g 1 \times f 1 \quad 51 . K c 8 \times b 8(S g 1) \quad 68 . K b 1 \times a 2(\mathrm{Rh} 1) \quad 87 . \mathrm{Ka} 6 \times a 5(\mathrm{~Pa} 2)$ 106.Kb1×a2 126.Ka5×b4(Ra1) Ra1-a5 Z

Series Capture and Win-a-piece Tasks

by Arno Tüngler

ARTICLES

The fifth article dedicated to series length records is again covering three sections - all connected with capture stipulations, and even includes a challenge! Please look for this on page 290 and participate. Series Direct Self, and Help Capture tasks were started in the 1980s in the 'orthodox' field and have led to interesting achievements as you will soon see. Capturing would not make a big difference for direct Circe stipulations as only captures are specific moves anyway, and would immediately end the series. Thus, it was a great idea to invent a special stipulation for Circe - win-a-piece (German: Steingewinn) Its goal is not mere capturing resulting in rebirth of the captured unit, but to actually reduce the number of units of the opposite side (i.e., preventing rebirth)! Records for all three sections, direct, self, and help win-a-piece, were included in the feenschach 2002 article of Branko Koludrović and Hans Gruber, and we will also only concentrate on these stipulations for Circe rules.

The records with few units in both series-direct categories have been untouched for decades, and it's difficult to find anything better here Interesting that the capture task with 5 units is only one move longer than the one with 4! In 2000 Jörg Varnholt found an interesting matrix for Circe that has been widely used for records of up to 10 units. Any new ideas here?
$\operatorname{ser}-\times \rightarrow$
'Orthodox' 3-6 units

ser-\% \rightarrow Circe 3-6 units

DX-2
Markus Ott
Problemkiste 1984

$$
\operatorname{ser}-\times 17 \quad \mathrm{C}+(1+3)
$$

DX-5
Erich Bartel
Problemkiste 1991

ser-\% $16 \quad \mathrm{C}+(1+2)$
Circe
DX-6
Unto Heinonen
Problemkiste 1992

ser- $\% 27 \quad \mathrm{C}+\quad(1+3)$
Circe

DX-1
Erich Bartel
Problemkiste 1984

$\operatorname{ser}-\times 10 \quad \mathrm{C}+(1+2)$

DX-1: 1.Kf1-g1 10.Kc4×c3 ×

DX-2: 1.Ka8-a7 17.Kd6×c6 \times

DX-3

Branko Koludrović

$\operatorname{ser}-\times 18 \quad \mathrm{C}+(1+4)$

DX-3: 1.Kh8-g8 18.Kg5×g6 \times

DX-4
Branko Koludrović Problemkiste 1987

$\operatorname{ser}-\times 23 \quad \mathrm{C}+(1+5)$

DX-5: 1.Kc8-d7 8.Kg1×f1[Bc8] 16.Kd8×c8 \%

DX-6: 1.Kh8-g8 14.Kh4×h5[Sg8] 27.Kf7×g8 \%

DX-7
Jörg Varnholt
Problemkiste 2000

DX-8
Jörg Varnholt

ser-\% $42 \mathrm{C}+(1+5)$
Circe
DX-7: 1.Kh8-g8 16.Kh4×h5[Sg8] 31.Kf7×g8 \%

DX-8: 1.Kf8-e7 9.Kd1×e1[Bf8] 16.Kf7×g8[Ra8] 29.Kh4×h5 [Sg8] 42.Kf7×g8 \%

ARTICLES

In 2009 Cornel had a great idea... When analyzing the amazing series length record of Ivan Skoba and Pavel Vyoral from 1978 (see PDB/P1237128) he transposed the idea from ser-h\# to ser- x and even found a first new record in that category. When showing it to Vladimír Janál, the latter introduced the black queen, and then Ivan got involved and had the bishop shielded by pawn and helping the queen with a parallel diagonal line at the same time. Then I joined the effort assigning to the black bishop the key role of being the piece captured, and while new ideas and improvements bounced back and forth we eventually achieved five new length records with 8 to 15 units! Four of those are still valid: DX-10 - DX-12 and DX-17.

There was no Circe record with 8 units, so I just added a pawn to DX-13 and achieved a problem that has no check in the initial position with the same number of moves. That is still viewed as being a record but I hope that someone finds something with more moves!

'Orthodox' 7-10 units

ser-×24 C+ (1+6)

DX-9: 1.Kc4-d3 $24 . \mathrm{Kg} 7 \times \mathrm{g} 6 \times$

DX-10: 1.Ke8-d8 14.Kf4-f5 17.Bh7-g8 32.Ke8×f8 \times

DX-11: 1.Ke8-d8 15.Kf4-f5 18.Bh7-g8 34.Ke8×f8× DX-12: 1.Ke8-d7 16.Kg4-f5 19.Bh7-g8 36.Ke8×f8 \times

DX-12
Cornel Pacurar
Ivan Skoba
Arno Tüngler
Blog zlínského
problemisty 2009

Circe 7-10 units

DX-10
Cornel Pacurar
Arno Tüngler
Ivan Skoba
Vladimír Janál
Blog zlínského problemisty 2009

ser-\% 51
Circe
DX-13
Jörg Varnholt
Problemkiste 2001

DX-13: 1.Kf8-e7 9.Kd1×e1[Bf8] 19.Kf7×g8[Ra8] 35.Kh4×h5 [Sg8] 51.Kf7×g8 \%
DX-14: 1.Kf7-e6 9.Kd1×e1[Bf8] 19.Kf7×g8[Ra8] $35 . \mathrm{Kh} 4 \times \mathrm{h} 5$ [Sg8] 51.Kf7×g8 \%

ser-\% 56
Circe

DX-16

ser $-\times 36 \quad \mathrm{C}+(3+7)$
DX-15: 1.Kd1-c1 7.Kd6×e5[Pe7] 14.Kd1×e1[Bf8] 24.Kf7×g8 [Ra8] 40.Kh4 $\times \mathrm{h} 5[\mathrm{Sg} 8] 56 . \mathrm{Kf7} \times \mathrm{g} 8 \%$
DX-16: $\quad 1 . \mathrm{Kc} 1 \times \mathrm{d} 1[\mathrm{Qd} 8] \quad 10 . \mathrm{Ke} 5 \times \mathrm{e} 6[\mathrm{Pe} 7] \quad 20 . \mathrm{Kd} 1 \times \mathrm{e} 1[\mathrm{Bf} 8]$
31.Kf7 $\times \mathrm{g} 8[\mathrm{Ra} 8] 48 . \mathrm{Kh} 4 \times \mathrm{h} 5[\mathrm{Sg} 8] 65 . \mathrm{Kf7} \times \mathrm{g} 8 \%$

ARTICLES

'Orthodox' 11-14 units

DX-17

Vladimír Janál
Cornel Pacurar
Ivan Skoba
Arno Tüngler
Blog zlínského
problemisty 2009

$\operatorname{ser}-\times 38 \quad \mathrm{C}+(6+6)$

DX-17: 1.Ke1-f1 16.Kc4-d3 19.Bb1-a2 38.Kc1×b2 \times

DX-18

Arno Tüngler
Version M. Tomašević
Problemkiste 1989

ser- $\times 42 \quad \mathrm{C}+(5+8)$
DX-18: 1.Bb8-c7 5.Bf8-g7 7.Kg8-f8 14.Bd8-e7 16.Ke8-d8 23.Bb6-c7 25.Kc8-b7 26.Bc7-b6 28.Ka6-b5 29.Bb6-c5 31.Kc4-d3 35.Bf4-e5 37.Ke4-f3 39.Bf4-g5 42.Kh4×h5 ×

Circe 11-14 units

DX-19

Branko Koludrović

Problemkiste 2002

ser-\% $68 \quad \mathrm{C}+(1+10)$
Circe
DX-19: $1 . \mathrm{Kc} 1 \times \mathrm{d} 1[\mathrm{Qd} 8] \quad 10 . \mathrm{Ke} 5 \times \mathrm{e} 6[\mathrm{Pe} 7] \quad 20 . \mathrm{Kd} 1 \times \mathrm{e}[\mathrm{Bf8}]$ 32.Kf7 $\times \mathrm{g} 8[\mathrm{Ra} 8] 50 . \mathrm{Kh} 4 \times \mathrm{h} 5[\mathrm{Sg} 8] 68 . \mathrm{Kf7} \times \mathrm{g} 8 \%$

DX-20

Zdenek Oliva
Problemkiste 1997

ser-\% $85 \quad \mathrm{C}+(4+9)$
Circe
DX-20: 1.Ba3-b2 5.Bh6-g7 7.Kg8-f8 14.Bd8-e7 16.Ke8-d8 23.Bb6-c7 25.Kc8-b7 26.Bc7-b6 28.Ka6-b5 29.Bb6-c5 31.Kc4d4 38.Bf4-e5 40.Ke4-f3 42.Bf4-g5 45.Kh4×h5[Ph7] 48.Kg3-f3 50.Bf4-e5 52.Ke4-d4 59.Bb6-c5 61.Kc4-b5 62.Bc5-b6 64.Ka6-b7 65.Bb6-c7 67.Kc8-d8 74.Bf8-e7 76.Ke8-f8 83.Bh6-g7 85.Kg8×h7 \%

ARTICLES

After posting a new idea in this category with many units, I was amazed when I saw the next day Ján Golha's crashing riposte with DX-21 on the forum! The judge of that fairy tournament in MatPlus, while "not interested in records", acknowledged the "repeated interference of black pieces, where the white Bishop must choose the route not obstructed by his own King." Try to solve it and you'll see how the play is not boring at all!

There are only three win-a-piece tasks with normal force and more than 13 units, all based on the matrix that was used initially for the 'orthodox' direct capture length records. DX25 and DX-30 had originally the wK on f 7 and one move more, but I agree now with Branko that these are not real records as there is no last move with Circe rules in these two problems. Even with orthodox rules there would not be a last move in the overall record. So, I would like to keep those records in the current form.
'Orthodox' 15-18 units

DX-21

ser $-\times 50 \quad \mathrm{C}+(7+8)$

DX-22
Ján Golha
Arno Tüngler
Mat Plus 2009

$\operatorname{ser}-\times 51 \quad \mathrm{C}+(8+8)$
DX-21: 1.Be4-d5 5.Bc8-d7 7.Ka7-a6 16.Bb3-d5 18.Ka5-a4 19.Bd5-b3 21.Kb4-c3 22.Bb3-c2 24.Kd2-d1 27.Bd5-e4 29.Ke1f1 39.Bh3-g2 43.Kh3-h4 47.Bh5-g6 50.Kh6×g7×
DX-22: 1.d5-d6 2.Be4-d5 6.Bc8-d7 8.Ka7-a6 17.Bb3-d5 19.Ka5-a4 20.Bd5-b3 22.Kb4-c3 23.Bb3-c2 25.Kd2-d1 28.Bd5e4 30.Ke1-f1 40.Bh3-g2 44.Kh3-h4 48.Bh5-g6 51.Kh6×g7 \times

DX-23
Arno Tüngler
Strate Gems 2012

DX-23: 1.Kg3-h4 12.Be8-g6 13.Kh4-g4 15.h4-h5 16.h2-h4 17.Kg4-h3 24.Ba4-c2 26.Kh2-h1 33.Be8-g6 35.Kg1-f1 43.Bd1-e2 46.Kd1-c1 48.Bd1-c2 53.Kc5×d6 ×

DX-24: 1.Kg3-h4 12.Be8-g6 13.Kh4-g4 15.h4-h5 16.h2-h4 17.Kg4-h3 24.Ba4-c2 26.Kh2-h1 33.Be8-g6 35.Kg1-f1 43.Bd1-e2 46.Kd1-c1 48.Bd1-c2 52.Kd4-c5 54.d4-d5 55.Bc2-b3 57.Kb4×a3

Circe 15 - 18 units

DX-25
Arno Tüngler
Version
Problemkiste 2005

ser-\% $92 \quad \mathrm{C}+(6+11)$
Circe
DX-25: 1.Bh8-g7 12.Bd8-e7 14.Kd8-e8 25.Ba5-c7 27.Kc8b7 28.Bc7-b6 30.Ka6-b5 32.Ba5-b4 43.Kh4×h5[Sg8] 54.Ka4b5 56.Ba5-b6 58.Ka6-b7 59.Bb6-c7 61.Kc8-d8 72.Bf8-e7 $76 . \mathrm{Kg} 7 \times \mathrm{h} 7[\mathrm{Bc} 8] 80 . \mathrm{Ke} 8-\mathrm{d} 8$ 91.Ba5-c7 92.Kd8×c8 \%

DX-26

Branko Koludrović
Problemkiste 2007
After A. Tüngler

ser-\% $106 \mathrm{C}+(5+13)$
Circe
DX-26: 1.Bh8-g7 12.Bd8-e7 14.Ke8-d8 25.Ba5-c7 27.Kc8b7 28.Bc7-b6 30.Ka6-a5 40.Bc1-b2 50.Kh4×h5[Sg8] 60.Kb4a5 70.Bd8-b6 72.Ka6-b7 73.Bb6-c7 75.Kc8-d8 86.Bf8-e7 90. $\mathrm{Kg} 7 \times \mathrm{h} 7[\mathrm{Bc} 8] 94 . \mathrm{Ke} 8-\mathrm{d} 8$ 105.Ba5-c7 106.Kd8×c8 \%

ARTICLES

As Cornel rightly remarked in a message to me, the series direct capture category is "one of [my] most favourite stipulations!" It was nice to find the hidden possibilities of the matrix with the free white bishop and finally go over 60 moves. Time after time I return to these results as there is still the strong feeling that more should be possible... For example, the manoeuvre to bring the wK from a3 to h4 in DX-29 seems rather short. All tries to extend this proved incorrect, but maybe a reader will come up with the right idea!?

The overall records for win-a-piece have been unchanged for ten years. Interestingly, the length is due to very long capture-free series by both the white king and bishop. There are only 3 , respectively 4 captures in the solutions, while the much shorter DX-16 and DX- 19 feature 6 such moves. I would be interested to find out the maximum number of captures that could be introduced in a Circe series-mover with the win-a-piece goal. Please send your results of this challenge until the end of November to Cornel or me so that I can include it in an article for the last 2016 Bulletin.

'Orthodox' 20 units and Overall Records

ser-×60 $\quad \mathrm{C}+(9+11)$

DX-28
Arno Tüngler ChessProblems.ca

ser-×61 C+ (10+11)

DX-27: 1.Kh3-h4 12.Be8-g6 13.Kh4-g4 14.h2-h4 15.Kg4-h3 22.Ba4c2 24.Kh2-h1 31.Be8-g6 33.Kg1-f1 41.Bd1-e2 44.Kd1-c1 46.Bd1-c2 48.Kd2-c3 49.Bc2-b3 51.Kb4-a3 53.Ba4-b5 60.Kc8×d8 \times

DX-28: 1.Kb4-a5 12.Bd8-b6 13.Ka5-b4 14.a4-a5 15.a3-a4 16.Kb4a3 26.Bc1-b2 30.Kc1-d1 34.Be1-f2 36.Ke2-f3 37.Bf2-g3 39.Kg4-h4 50.Bh6-g5 52.Kh5-h6 60.Bb6-c7 61.Kh6 \times h7 \times

DX-29

Branko Koludrović
Arno Tüngler
ChessProblems.ca
2013
$4^{\text {th }}$ Hon. Mention

ser-× $83 \quad$ C+ $(10+12)$
DX-29: 1.Ka4-a5 14.Bc5-b4 16.Ka4-b3 18.a4-a5 19.a2-a4 20.Kb3-a3 32.Bc1-b2 36.Kc1-d1 40.Be1-f2 42.Ke2-f3 43.Bf2-g3 45.Kg4-h4 56.Bh6-g5 60.Kg7-f8 69.Bd8-e7 71.Ke8-d8 82.Bb6-c7 83.Kd8×d7 \times

Circe Overall Records

DX-30

Arno Tüngler
Version
Problemkiste 2005

ser-\% 110 C+ $(5+14)$
DX-30: 1.Bh8-g7 12.Bd8-e7 14.Ke8-d8 25.Ba5-c7 27.Kc8b7 28.Bc7-b6 30.Ka6-a5 40.Bc1-b2 43.Kb3-c2 44.Bb2-c1 52.Kh4×h5[Sg8] 60.Kd1-c2 61.Bc1-b2 64.Kb4-a5 74.Bd8-b6 76.Ka6-b7 77.Bb6-c7 79.Kc8-d8 90.Bf8-e7 $94 . \mathrm{Kg} 7 \times \mathrm{h} 7[\mathrm{Bc} 8]$ 98.Ke8-d8 109.Ba5-c7 110.Kd8×c8 \%

DX-31

Arno Tüngler
feenschach 2006

ser-\% $145 \mathrm{C}+(4+15)$

Circe

DX-31: 1.e5-e6 7.Bd1×e2[Be7] 13.Be8-d7 15.Kd8-e8 26.Bh5-f7 28.Kf8-g7 29.Bf7-g6 31.Kh6-h5 42.Bh3-g4 44.Kh4-g3 47.Bf1-e2 51.Kd1-c1 53.Bd1-c2 55.Kd2-c3 56.Bc2-b3 58.Kb4-a3 60.Ba4b5 62.Ka4×a5[Sb8] 64.Ka4-a3 66.Ba4-b3 68.Kb4-c3 69.Bb3-c2 71.Kd2-c1 73.Bd1-e2 77.Kf2-g3 80.Bh3-g4 82.Kh4-h5 93.Be8g6 95.Kh6-g7 96.Bg6-f7 98.Kf8-e8 109.Bc8-d7 111.Kd8-c8 119.Bd1-b3 121.Kb7×a7[Bf8] 123.Kb7-c8 131.Be8-d7 133.Kd8e8 144.Bh5-f7 145. Ke8×f8 \%

ARTICLES

When exploring different new aims in the 1980's the German Problemkiste, published by Erich Bartel, was also promoting all the stipulations connected with capture goals. It is important to understand that in self- or helpplay with the goal to force or help the passive side to specific moves, there is no 'ban' on these moves for the active side. In a self-capture White is well allowed to capture, in a self-Zxy he can enter square $x y$ and in self-pin he may pin a black unit without ending the play.

The 3-unit length record for this stipulation is unique - the only problem with a quiet last move bringing Black into zugzwang! Therefore, it would also be a correct ser-xz (capture Zugzwang), the famous invention of the late Dan Meinking. Are there more ways to make use of this possibility instead of the usual last-move check?

Starting with 5 units the Circe self win-a-piece records are shorter than the corresponding 'orthodox' self-capture tasks. Most likely this has to do with the need to have the white rebirth square of the checking unit occupied. This is well demonstrated by the only original in this section, SX-8 by Paul Răican. The bSd1 is here smartly used as not only occupying the needed square (and thus being "uncapturable") but also observing squares that would allow duals in the march of the white king.

ser-s $\times \rightarrow$ 'Orthodox' 3-6 units

ser-s $\% \rightarrow$
Circe 3-6 units

SX-5 SX-6

Erich Bartel
Problemkiste 1992
1989

ser-s\% $8 \quad$ C $+(2+1)$
Circe
SX-5: 1.Kc4-d4 6.c7-c8=Q 8.Qg4-d1+Kd2×d1 \%
SX-6: 1.Kh3-h4 5.Ke7-d8 6.c7-c8=Q 7.Qc8-d7 11.Kg5 $\times \mathrm{h} 5[\mathrm{Bc} 8]$
15. $\mathrm{Ke} 2-\mathrm{d} 116 . \mathrm{Qd} 7-\mathrm{g} 7+\mathrm{Kg} 8 \times \mathrm{g} 7 \%$

SX-7
Henry Tanner
Problemkiste 2000

ser-s\% 22
Circe
$\mathrm{C}+(2+3)$

SX-7: $18 . \mathrm{Kg} 5 \times \mathrm{g} 4[\mathrm{Bc} 8] 21 . \mathrm{Ke} 2-\mathrm{d} 122 . \mathrm{Qd} 7-\mathrm{g} 7+\mathrm{Kg} 8 \times \mathrm{g} 7 \%$
SX-8: 1.Kh5-h4 13.Ke7×f7[Bc8] 20.Kb8×c8 22.Kd7×e6[Sg8] 23.Ke6-f5 26.e7-e8=Q 28.Qe1-f2+ Kf3×f2 \%

ser-s\% $28 \quad \mathrm{C}+(2+4)$
Circe

Henry Tanner after U. Heinonen Problemkiste 2000

ser-s\% $16 \quad \mathrm{C}+(2+2)$ Circe

ARTICLES

Again I need to turn your attention to the fact that there is no record for 10 units in the 'orthodox' section! We record hunters like to fill such gaps, but obviously it is not easy. Sometimes the only way to do it is to come up with an absolutely new idea not connected with the schemes used for the neighbouring more or fewer units...

Unto Heinonen and Jörg Varnholt made full use of a very specific Circe matrix that was mostly used for the low numbers in this category. When solving this kind of problems it is always interesting to analyze why the captures have to be made in the particular sequence.

'Orthodox' 7-10 units

SX-9: 1.Ka3-a2 13.Kb7×a8 $27 . \mathrm{Ka} 3 \times \mathrm{a} 440 . \mathrm{Kc} 6 \times \mathrm{b} 641 . \mathrm{Kb} 6-\mathrm{c} 5$ 44.b7-b8=Q 45.Qb8-b2 $+\mathrm{Kc} 3 \times$ b2 \times

SX-10: $1 . \mathrm{Kg} 4-\mathrm{f} 416 . \mathrm{Kg} 7 \times \mathrm{h} 633 . \mathrm{Kg} 4 \times \mathrm{h} 449 . \mathrm{Kg} 7 \times \mathrm{g} 651 . \mathrm{Kf5} \times \mathrm{e} 4$ 54.Ke6×d6 55.Kd6-c5 58.d7-d8=Q 60.Qd1-c2 + Kc3×c2 \times

SX-11: $\quad 1 . \mathrm{Kc} 8-\mathrm{d} 7 \quad 13 . \mathrm{Kd} 3 \times \mathrm{c} 4 \quad 28 . \mathrm{Kb} 7 \times a 6 \quad 45 . \mathrm{Kb} 4 \times a 4$ 61.Kb7×b6 63.Kc5×d4 66.Kd6×e6 67.Ke6-f5 70.d7-d8=Q 72.Qe1-f2+Kf3×f2×

Circe 7-10 units

SX-12
Unto Heinonen
Problemkiste 2000

ser-s\% $36 \quad \mathrm{C}+(2+5)$ Circe

SX-13
Unto Heinonen

ser-s\% $45 \quad \mathrm{C}+(2+6)$ Circe

SX-12: 1.Kd1-c1 14.Kf2×f1[Sg8] 20.Kc7×d8[Rh8] 26.Kc6d5 27.d7-d8=Q 28.Qd8-f6 35.Kc1-d1 36.Qf6-d4+ Kd3×d4, Qg7×d4 \%
SX-13: 1.Ka8-a7 7.Kf5 $\times \mathrm{f} 4[\mathrm{Bf} 8] \quad 23 . \mathrm{Kc} 7 \times \mathrm{d} 8[\mathrm{Rh} 8] \quad 36 . \mathrm{Ke6}-$ d5 37.d7-d8=Q 38.Qd8-f6 44.Ke1-d1 45.Qf6-d4+ Kd3×d4, Qg7×d4 \%

SX-14

Jörg Varnholt
Problemkiste 2001

ser-s\% $59 \quad \mathrm{C}+(2+7)$
Circe
SX-14: 1.Ka8-a7 4.Kc6×d5[Ra8] 10.Kb1×c1[Bf8] 23.Kf3 $\times \mathrm{f} 2[\mathrm{Sb} 8$] $\quad 34 . \mathrm{Kc} 7 \times \mathrm{d} 8[\mathrm{Rh} 8] \quad 50 . \mathrm{Ke6}-\mathrm{d} 5 \quad 51 . \mathrm{d} 7-\mathrm{d} 8=\mathrm{Q}$ 52.Qd8-f6 58.Ke1-d1 59.Qf6-d4+Kd3×d4,Qg7×d4 \%

SX-15: $\quad 1 . \mathrm{Ka} 5-\mathrm{a} 4 \quad 2 . \mathrm{Ka} 4 \times \mathrm{b} 3[\mathrm{Ra} 8] \quad 7 . \mathrm{Kd} 1 \times \mathrm{e} 1[\mathrm{Bf} 8]$ 16. $\mathrm{Kb} 6 \times \mathrm{c} 6[\mathrm{Pc} 7] \quad 17 . \mathrm{Kc} 6 \times \mathrm{c} 7 \quad 29 . \mathrm{Kf} 3 \times \mathrm{f} 4[\mathrm{Sb} 8] \quad 42 . \mathrm{Kc} 7 \times \mathrm{d} 8[\mathrm{Rh} 8]$ 58.Ke6-d5 59.d7-d8=Q 60.Qd8-f6 66.Ke1-d1 67.Qf6-d4+ $\mathrm{Kd} 3 \times \mathrm{d} 4, \operatorname{Qg} 7 \times \mathrm{d} 4 \%$

ARTICLES

Starting with SX－17 the Kemp mechanism takes over as the main matrix for the ＇orthodox＇records．All these were produced in 1992 by the Tomašević duo and some of them are quite similar to the corresponding series self target－square tasks．

Branko intervenes now，to dominate the self win－a－piece section starting with 11 units．For the first two records he still uses the Heinonen matrix but then he moves to the already well－ known scheme from other Circe stipulations with the formation of two rooks and two knights．The 14 －units record has a full 26 moves more than the one with 13 units and is again longer than the＇orthodox＇capture problem with the same number of units．

＇Orthodox＇11－14 units

SX－16	SX－17
Miloš Tomašević	Miloš Tomašević
Radovan Tomašević	Radovan Tomašević
Problemkiste 1992	Problemkiste 1992
\MM ${ }^{\text {堂 }}$	
颜	
宣	业
\triangle M ${ }^{\text {a }}$	B
	YMM
© MWI	
	洨䢒
ser－s× $78 \quad \mathrm{C}+(2+9)$	ser－s× $89 \quad \mathrm{C}+(3+9)$

SX－16：1．Kf5－g5 14．Kb5×a6 31．Kd7×c8 50．Ka7×a8 69．Kd7×c7 71．Kd6×e5 72．Ke5－f5 76．e7－e8＝Q 78．Qe1－f2 Kf3×f2 \times
SX－17：1．Kf1－e1 14．Kf5×g4 29．Kf1×g1 45．Kg4×h3 62．Kg1×h1 79．Kg4×f3 81．Ke3×d3 82．Kd3－e3 84．d3×e4 88．e7－e8＝Q 89．Qe8－b5＋Kc5×b5 \times

SX－18

Miloš Tomašević
Radovan Tomašević
Problemkiste 1992

ser－s× $94 \quad \mathrm{C}+(3+10)$

SX－19
Miloš Tomašević Radovan Tomašević Problemkiste 1992

ser－s× $96 \quad \mathrm{C}+(3+11)$

SX－18：1．Kf1－e1 15．Kf5×g4 31．Kf1×g1 51．Kg4×h3 70．Kg1×h1 89．Kg4×f3 87．Ke3×d3 88．Kd3－e3 89．d3×e4 95．f7－f8＝Q 96．Qe8－ b5＋Kc5×b5 \times
SX－19：1．Kf1－e1 16．Kf5×g4 33．Kf1×g1 51．Kg4×h3 66．Kg1×h1 85．Kg4×f3 90．Kf3－e2 92．f4×e5 93．e5×f6 93．e7－e8＝Q 94．Qf8－ b4＋Kc4×b4 \times

Circe 11－14 units

SX－20

Branko Koludrović
Problemkiste 2008

ser－s\％ $71 \quad \mathrm{C}+(2+9)$

Circe

SX－21

Branko Koludrović

ser－s\％ $75 \quad \mathrm{C}+(2+10)$ Circe

SX－20：1．Ka5－a4 4．Ka2×b1［Ra8］7．Kd1×e1［Bf8］16．Kb6×c6［Bc7］ $17 . \mathrm{Kc} 6 \times \mathrm{c} 7$ 31．Kh3×h4［Sb8］46．Kc7×d8［Rh8］62．Ke6－d5 63．d7－d8＝Q 64．Qd8－f6 70．Ke1－d1 71．Qf6－d4＋Kd3×d4，Qg7×d4 \％
SX－21：1．Ka5－a4 4．Ka2×b1［Ra8］7．Kd1×e1［Bf8］16．Kb6×c6［Bc7］ 18．Kd5 $\times \mathrm{e} 6[\mathrm{Sg} 8] \quad 21 . \mathrm{Kc} 6 \times \mathrm{c} 7 \quad 35 . \mathrm{Kh} 3 \times \mathrm{h} 4[\mathrm{Sb} 8] \quad 50 . \mathrm{Kc} 7 \times \mathrm{d} 8[\mathrm{Rh} 8]$ 66．Ke6－d5 67．d7－d8＝Q 68．Qd8－f6 74．Ke1－d1 75．Qf6－d4＋ $\mathrm{Kd} 3 \times \mathrm{d} 4, \mathrm{Qg} 7 \times \mathrm{d} 4 \%$

SX－23

Branko Koludrović

Problemkiste 2008

ser－s\％ $102 \mathrm{C}+(5+9)$
Circe
Circe
SX－22：1．Ka8－b8 19．Kb4×a5［Sb8］37．Kc8×b8 $56 . \mathrm{Kb5} \times \mathrm{c} 6[\mathrm{Ra} 8]$ $57 . \mathrm{Kc} 6 \times \mathrm{c} 5[\mathrm{Sb} 8] \quad 72 . \mathrm{Kb} 7 \times \mathrm{a} 873 . \mathrm{Ka} 8 \times \mathrm{b} 875 . \mathrm{Kc} 8-\mathrm{d} 776 . \mathrm{f4} \times \mathrm{e} 5[\mathrm{Bf} 8]+$ Kf6×e5 \％
SX－23：1．Kc8－d8 $12 . \mathrm{Kd} 2 \times \mathrm{c} 2[\mathrm{Pc} 7] \quad 26 . \mathrm{Kb} 8 \times \mathrm{a} 7 \quad 45 . \mathrm{Kb} 4 \times \mathrm{a}[\mathrm{Sb} 8]$ $63 . \mathrm{Kc} 8 \times$ b8 82．Kb5 $\times 66[\mathrm{Ra} 8] 83 . \mathrm{Kc6} \times \mathrm{c} 5[\mathrm{Sb} 8] 98 . \mathrm{Kb} 7 \times \mathrm{a} 899 . \mathrm{Ka} 8 \times$ b8 101．Kc8－d7 102．f4×e5［Bf8］＋Kf6×e5 \％

ARTICLES

SX-26 and SX-27 were the only new 'orthodox' length records in this category that we were able to compose. Miloš and Radovan were really good in making use of the known matrices. I was happy to find the possibility for the SX-27 with an unprotected pawn on d7 that cannot be captured by the white king as it is needed for capture by the wP in the $119^{\text {th }}$ move! By the way, the same position would also be a correct ser-Ze6 in 121 moves, equalizing the DZ-32 on page 218 of Bulletin 7.

Starting with SX-28 Branko forces Black to capture on g6 - demonstrating his ability to take advantage of the above-mentioned matrix.

'Orthodox' 15-18 units

SX-24: 1.Kf1-e1 18.Kh6×g5 37.Kf1×g1 58.Kg5×f6 59.Kh3×h4 80. $\mathrm{Kg} 1 \times \mathrm{h} 1 \quad 102 . \mathrm{Kg} 4 \times \mathrm{f} 3 \quad 103 . \mathrm{Kf3}-\mathrm{e} 2 \quad 106 . \mathrm{f} 5 \times \mathrm{g} 6 \quad 108 . \mathrm{g} 7-\mathrm{g} 8=\mathrm{Q}$ 109. Qg8-b3 $+\mathrm{Kc} 3 \times \mathrm{b} 3 \times$

SX-25: 1.Ke7-d8 19.Kh4×h5 $38 . \mathrm{Kd} 8 \times \mathrm{e} 8$ 58.Kg4×h3 $79 . \mathrm{Ke} 8 \times \mathrm{f} 8$ 102.Ke6×d6 $\quad 103 . \mathrm{Kd6} \times \mathrm{c} 5 \quad 104 . \mathrm{Kc5} \times \mathrm{c} 4 \quad 105 . \mathrm{Kc} 4 \times \mathrm{c} 3 \quad 106 . \mathrm{Kc} 3-\mathrm{d} 2$ $110 . c 6 \times b 7111 . b 7-b 8=Q 112 . Q b 8-g 3+K f 3 \times g 3 \times$

116

SX-27
Arno Tüngler
StrateGems 2011

$\operatorname{ser}-\mathrm{s} \times$
121

SX-26: 1.Kf1-e1 20.Kh5×g4 41.Kf1×g1 63.Kg4×h3 86.Kg1×h1 109.Kg4×f3 110.Kf3-e2 $\quad 113 . f 5 \times \mathrm{e} 6 \quad 115 . \mathrm{e} 7-\mathrm{e} 8=\mathrm{Q} \quad$ 116.Qe8-a4+ $\mathrm{Kc} 4 \times \mathrm{c} 5 \times$
SX-27: 1.Kd6-e7 17.Ka3×a4 35.Kd6×c5 54.Ka4×a5 $73 . \mathrm{Kd6} \mathrm{\times c7}$ $93 . \mathrm{Ka} 5 \times \mathrm{a} 6 \quad 114 . \mathrm{Kc} 5 \times \mathrm{c} 4 \quad 115 . \mathrm{Kc} 4-\mathrm{d} 3 \quad 119 . \mathrm{c} 6 \times \mathrm{d} 7 \quad 120 . \mathrm{d} 7-\mathrm{d} 8=\mathrm{Q}$ 121.Qd8-f6+Kf5×f6 \times

Circe 15-18 units

SX-28: $\quad 1 . \mathrm{Kb} 5-b 4 \quad 22 . \mathrm{Kb} 8 \times \mathrm{a} 7 \quad 44 . \mathrm{Kb} 4 \times \mathrm{a} 5[\mathrm{Sb} 8] \quad 65 . \mathrm{Kc} 8 \times \mathrm{b} 8$ 87.Kb5 $\times \mathrm{c} 6[\mathrm{Ra}$] $88 . \mathrm{K} \times \mathrm{c} 5[\mathrm{Sb} 8] 106 . \mathrm{Kb} 7 \times \mathrm{a} 8107 . \mathrm{Ka} \times \mathrm{b} 8109 . \mathrm{Kc} 8-\mathrm{d} 7$ 110.Sg7-e6+Kf6×g6 \%

SX-29: $\quad 1 . \mathrm{Ke} 2-\mathrm{d} 1 \quad 7 . \mathrm{Kb} 4 \times \mathrm{b} 5[\mathrm{Bc} 8] \quad 27 . \mathrm{Kd} 8 \times \mathrm{c} 8 \quad 29 . \mathrm{Kb} 8 \times \mathrm{a} 7$ 51.Kb4×a5[Sb8] $72 . \mathrm{Kc} 8 \times b 8 \quad 94 . \mathrm{Kb} 5 \times \mathrm{c} 6[\mathrm{Ra} 8] \quad 95 . \mathrm{Kc} 6 \times \mathrm{c} 5[\mathrm{Sb} 8]$ 113.Kb7×a8 114.Ka8×b8 116.Kc8-d7 117.Sg7-e6+Kf6×g6 \%

ser-s\%
121 Circe

SX-31
Branko Koludrović

Problemkiste 2001

ser-s\%
$\mathrm{C}+(4+14)$
124 Circe

SX-30: 1.Kc8-d8 $15 . \mathrm{Kd} 2 \times \mathrm{c} 2[\mathrm{Pc} 7] \quad 32 . \mathrm{Kb} 8 \times \mathrm{a} 7 \quad 54 . \mathrm{Kb} 4 \times \mathrm{a} 5[\mathrm{Sb} 8]$ $75 . \mathrm{Kc} 8 \times \mathrm{b} 8 \quad 97 . \mathrm{Kb} 5 \times \mathrm{c} 6[\mathrm{Ra} 8] \quad 98 . \mathrm{Kc} 6 \times \mathrm{c} 5[\mathrm{Sb} 8] \quad 117 . \mathrm{Kb} 7 \times \mathrm{a} 8$ 118.Ka8×b8 120.Kc8-d7 121.Sg7-e6+Kf6×g6 \%

SX-31: $\quad 1 . \mathrm{Kc} 8-\mathrm{d} 8 \quad 4 . \mathrm{h} 5 \times \mathrm{g} 6 \quad 18 . \mathrm{Kd} 2 \times \mathrm{c} 2[\mathrm{Pc} 7] \quad 35 . \mathrm{Kb} 8 \times \mathrm{a} 7$ $57 . \mathrm{Kb} 4 \times \mathrm{a} 5[\mathrm{Sb} 8] \quad 78 . \mathrm{Kc} 8 \times \mathrm{b} 8 \quad 100 . \mathrm{Kb} 5 \times \mathrm{c} 6[\mathrm{Ra} 8] \quad 101 . \mathrm{Kc} 6 \times \mathrm{c} 5[\mathrm{Sb} 8]$ $120 . \mathrm{Kb} 7 \times \mathrm{a} 8121 . \mathrm{Ka} 8 \times$ b8 123.Kc8-d7 124.Sg7-e6+Kf6×g6 \%

ARTICLES

Probably you remember the matrix of SX-32. I really like it as it differs from the others in having the release of the imprisoned white bishop as the first goal of the long king journey. After that the 'endgame' is also interesting here as bishop and king five times take turns in continuing the series!

139 moves for the normal force length record for self win-a-piece does not seem much, especially if you take into account that with promoted force you pass 200! Obviously there is room for improvement and you are invited to look for new ideas of how to lose a piece...

SX-38 (contd): 125.Ra5-a7 127.Ka5-a6 129.Ra5b5 143.Kf5×g6 157.Ka5-a6 159.Ra5-a3 161.Ka5a4 163.Ra5-b5 172.Kf8×g8 181.Ka5-a4 183.Ra5a7 185.Ka5-a6 187.Ra5-b5 192.Kb2×a1[Rh8] 203.Kf5×f6[Pf7] 209.Kg1-f1 210.Sb7-d6+ Rh8×a8 \%

SX-34
Arno Tüngler
ChessProblems.ca

2013

ser-s $\times 199 \mathrm{C}+(9+15)$
'Orthodox' 19 units and Overall Records
 125

126

SX-32: 1.Kh5-h6 11.Ka6×b5 29.Ke1×d1 48.Kb5×a4 70.Kb1×a2 92.Kb5×b4 113.Kc2×b2 114.Kb2-c3 $117 . \mathrm{Bc} 1 \times \mathrm{e} 3 \quad 120 . \mathrm{Ke} 1-\mathrm{f} 2$ 121.Be3×f4 124.Kh4-h5 125.Bf4-e5 + Kf6/Qe6×e5 \times

SX-33: 1.Ke7-d8 10.Ka2-a1 11.Bb1-a2 15.Kd1×e2 19.Kb1-a1 20.Ba2b1 30.Kd8×e8 40.Ka2-a1 41.Bb1-a2 50.Kh4×h5 59.Kb1-a1 60.Ba2b1 $71 . \mathrm{Ke} 7 \times$ f6 82.Ka2-a1 83.Bb1-a2 93.Kh5 \times h6 103.Kb1-a1 104.Ba2b1 116.Kf6×f5 117.Kf5×f4 118.Kf4-e5 123.f7×g8=Q 124.Qg8×f8 126.Qb8-b5 $+\mathrm{Kc} 6 \times \mathrm{b} 5 \times$
ser-s\% C+ (6+13) 135 Circe sX-35. $\quad 1 \mathrm{Kc}$ 3-d2 14.Ke8-d8 89.Kc8×b8 $68 . \mathrm{Kb} 4 \times \mathrm{a} 5[\mathrm{Sb} 8$ $31 . \mathrm{Kb} 7 \times \mathrm{a} 8132 . \mathrm{Ka} 8 \times$ b8 134.K
SX-36: $1 . \mathrm{Kc} 3-\mathrm{d} 2 \quad 14 . \mathrm{Ke} 8-\mathrm{d} 8 \quad 15 . \mathrm{f} 3 \times \mathrm{e} 4 \quad 29 \mathrm{Kd} 2 \times \mathrm{c} 2[\mathrm{Pc} 7] \quad 46 . \mathrm{Kb} 8 \times \mathrm{a} 7$ $68 . \mathrm{Kb} 4 \times \mathrm{a} 5[\mathrm{Sb} 8] \quad 89 . \mathrm{Kc} 8 \times \mathrm{b} 8 \quad 111 . \mathrm{Kb} 5 \times \mathrm{c} 6[\mathrm{Ra} 8] \quad 112 . \mathrm{Kc} 6 \times \mathrm{c} 5[\mathrm{Sb} 8]$ 132.Kb7×a8 133.Ka8×b8 135.Kc8-d7 136.g4-g5 + Kf6×g5,g6 \%

SX-37

Branko Koludrović
Problemkiste 2001

ser-s\% $139 \quad(8+13)$ Circe

SX-38

Branko Koludrović
Problemkiste 2006

ser-s\% 210
$(13+16)$ Circe

SX-37: 1.Kc2-d1 15.Kd8×c7 31.Kc7×b2[Bf8] 44.Kg8×f8 60.Kb4×a5[Sb8] 80.Kc7×b8 101.Ka5×a6 121.Kd8×c8[Sg8] 125.Kf8×g8 135.Ke2×d3[Ra8] $136 . \mathrm{Kd} 3 \times \mathrm{e} 3[\mathrm{Pe} 7]$ 137.Ke3×d2 138.Kd2-c1 139.Sg7-e6 + Ra8×h8 \% SX-38: 1.d3×c4[Sg8] 2.Ra5-b5 3.Ra4-a7 6.Ka5-a6 8.Ra5-a3 10.Ka5-a4 12.Ra5-b5 18.Kc8-d8 19.b2×c3 25.Ka5-a4 27.Ra5-a7 29.Ka5-a6 31.Ra5b5 42.Kh2×h3[Bc8] 53.Ka5-a6 55.Ra5-a3 57.Ka5-a4 59.Ra5-b5 64.Kb8×c8 69.Ka5-a4 71.Ra5-a7 73.Ka5-a6 75.Ra5-b5 89.Kf5×e6 103.Ka5-a6 105.Ra5a3 107.Ka5-a4 109.Ra5-b5 116.Kd8×e8[Bc8] 118.Kd8×c8 123.Ka5-a4

ARTICLES

30 years ago the first Help Capture Series-mover length records appeared in Problemkiste and up to now the main use of that stipulation stayed with this kind of problems. HX-4 was a surprising find 8 years later, in a race for records that had started with 20 moves and in 1985 was raised to just 21 moves by Hans Gruber. The new idea was to dispense with the promotion finish and pay more attention to the length of the king path.

1992 was also the start for Help Win-a-Piece Series-movers. These are all longer than the corresponding 'orthodox' series help captures. The helpful particularity here is that the goal can only be achieved if the black rebirth square is occupied for the white capture, a fact that again especially Branko has used well for achieving long series. While the 3unit record of the 4 authors is published here as it was in the feenschach article of 2002 there was another position, also 9 moves long, that appeared at the same time in the same Problemkiste issue, PDB/P1244998.

HX-1
 Hans Gruber
 Problemkiste 1984

 ser-h $\times 7 \quad \mathrm{C}+(1+2)$

HX-2

Hans Gruber Problemkiste 1984

ser-h $\times 11 \quad \mathrm{C}+(2+2)$

HX-1: 1.a6-a5 5.a2-a1=B 7.Bd4-a7 Ka8×a7 \times
HX-2: 1.Kh5-g4 7.Kb1×a2 8.Ka2-b1 10.a2-a1=S 11.Sa1-b3 $\mathrm{Kc} 3 \times \mathrm{b} 3 \times$

$$
\text { ser-h } \times 18 \quad \mathrm{C}+(3+2)
$$

HX-4

Miloš Tomašević
Mat 1992

$\operatorname{ser}-\mathrm{h} \times 28 \quad \mathrm{C}+(4+2)$
ser-h\% \rightarrow
Circe 3-6 units

HX-5

Boris Bursac
Hansjörg Schiegel
Michel Olausson
Unto Heinonen
Problemkiste 1992

Circe
HX
HX-6: 1.Ka1-b1 7.Kg1×h2[Ra1] 10.Kh4-g5 14.h2-h1=R 16.Rh8-a8 Ra1×a8 \%

HX-7

Jörg Varnholt
Problemkiste 2001

Circe

Circe
HX-7: $\quad 1 . \mathrm{Kh} 8-\mathrm{g} 8 \quad 14 . \mathrm{Kh} 4 \times \mathrm{h} 5[\mathrm{Sb} 1] \quad 15 . \mathrm{Kh} 5-\mathrm{g} 5 \quad 20 . \mathrm{h} 2-\mathrm{h} 1=\mathrm{R}$ 22.Rh8-a8 Be4×a8 \%

HX-8: 1.Kh8-g8 14.Kh4×h5[Sb1] 28.Ke5×f6[Pf2] 29.Kf6-g7 30.g5-g4+Kf3×g4 \%

ARTICLES

Cornel's and my attempts to find new records were connected with the matrix that Miloš and Radovan Tomašević had used with this stipulation, as it turned out that they had overlooked some opportunities...

We see a nice Circe-specific idea in HX-15 and HX-16: you first need to capture wBg3 to "win the piece" without rebirth on c1, and only after that you may capture the unit on that square. Branko is a master for detecting such possibilities!

'Orthodox' 7-10 units

HX-9
Miloš Tomašević
Radovan Tomašević
Mat 1992

ser-h $\times 37 \quad \mathrm{C}+(5+2)$
HX-9: $\quad 1 . \mathrm{Kf} 4-\mathrm{e} 4 \quad 16 . \mathrm{Kh} 4 \times \mathrm{h} 3 \quad 32 . \mathrm{Ke} 4 \times f 5 \quad 33 . \mathrm{Kf5} 5$-e4 $\quad 37 . f 3$-f2 Qg1×f2 \times
HX-10: 1.Kh6-h7 13.Ke4×f4 29.Kh4×h3 45.Ke4×f5 46.Kf5-e4 50.f3-f2 Qg1×f2 \times

HX-11

Cornel Pacurar
ChessProblems.ca
2010

HX-10
Miloš Tomašević
Radovan Tomašević Mat 1992

ser-h× $50 \quad$ C+ $(6+2)$

Cornel Pacurar
Itamar Faybish
Blog zlinskeho
problemisty 2009

ser-h $\times 59 \quad \mathrm{C}+(8+2)$

HX-11: 1.Kd8-e8 $7 . \mathrm{Kh} 5 \times h 420 . \mathrm{Kc} 4 \times \mathrm{d} 334 . \mathrm{Kh} 4 \times \mathrm{h} 350 . \mathrm{Ke} 4 \times \mathrm{f} 4$ 51.Kf4-e4 54.f3-f2 Qg1×f2 \times

HX-12: 1.Kf4-e4 13.Kh6×h5 26.Ke2×e1 40.Kh5×h4 54.Ke4×f5 55.Kf5-e4 59.f3-f2 $\mathrm{Qg} 1 \times f 2 \times$

Circe 7-10 units

HX-13: 1.Kg1-h2 12.Ka6×a5[Sg1] 23.Kh2×g1 39.Kd3×e2[Rh1] 44.Kf5×e6[Sb1] 46.Kd7-c7 Bg2×c6 \%

HX-14: 1.Kf1-g1 17.Kb2×c1[Sg1] 33.Kh2×g1 51.Kd3×e2[Rh1] 56.Kf5 \times e6[Sb1] 58.Kd7-c7 Kc5×c4 \%

HX-15
Branko Koludrović
Problemkiste 2001

ser-h\% $66 \quad \mathrm{C}+(7+2)$
Circe
HX-15: $1 . \mathrm{Kd} 2-\mathrm{c} 3 \quad 14 . \mathrm{Kg} 4 \times \mathrm{g} 3 \quad 27 . \mathrm{Kb} 2 \times \mathrm{c} 1[\mathrm{Sg} 1] \quad 42 . \mathrm{Kh} 2 \times \mathrm{g} 1$ 59.Kd1×e2[Rh1] 64.Kf5×e6[Sb1] 66.Kd7-c7 Bg2×c6 \%

HX-16: 1.Ka8-a7 $6 . \mathrm{Ka} 3 \times \mathrm{b} 2[\mathrm{Ra} 1] \quad 7 . \mathrm{Kb} 2 \times \mathrm{a} 1 \quad 20 . \mathrm{Kg} 4 \times \mathrm{g} 3$ 33.Kb2×c1[Sg1] 48.Kh2×g1 65.Kd1×e2[Rh1] 70.Kf5×e6[Sb1] 72.Kd7-c7 Bg2×c6 \%

HX-16
Branko Koludrović
Problemkiste 2001

ser-h\% $72 \quad \mathrm{C}+(8+2)$ Circe

ARTICLES

'Orthodox' 11-14 units

HX-18
Miloš Tomašević
Radovan Tomašević

$\operatorname{ser}-\mathrm{h} \times 78 \quad \mathrm{C}+(10+2)$

HX-17: $1 . \mathrm{Ke} 2-\mathrm{d} 2$ 15.Kh5 \times h4 $31 . \mathrm{Ke} 2 \times \mathrm{f} 347 . \mathrm{Kh} 4 \times \mathrm{h} 365 . \mathrm{Kf} 4 \times \mathrm{f} 5$ 66.Kf5-e6 70.f3-f2 $\operatorname{Qg} 1 \times f 2 \times$

HX-18: 1.Kh8-g8 2.f7-f6 11.Kc2×d2 24.Kh5×h4 $39 . \mathrm{Ke} 2 \times f 3$ 55.Kh4×h3 73.Kf4×f5 74.Kf5-e6 78.f3-f2 $\mathrm{Qg} 1 \times f 2 \times$ the nice possibility of having a white rook on b2 in HX-21! At first glance you may notice the dangerous capture of that rook by the black c-pawn, but then you realize that this would be an illegal self-check due to its rebirth on a1! And this very rook prevents the black king from leaving the fatal a-file, unless he captures the rook and thus destroys all opportunities for the pawn..

All four Circe tasks with 11 to 14 units use the fact that Black needs access for his king to the potential rebirth square of the unit that must be captured. I like especially the fine use of the black bishop in HX-22, that first is needed so that one white rook can be captured without rebirth and then itself becomes the sacrifice for the other white rook.

HX-20
Miloš Tomašević
Radovan Tomašević
Mat 1992

ser-h $\times 92 \quad \mathrm{C}+(11+3)$

Circe 11-14 units

HX-22
Branko Koludrović
Problemkiste 2001

ser-h\% $83 \quad \mathrm{C}+(9+3)$ Circe

HX-21: 1.Ka8-a7 $6 . \mathrm{Ka} 3 \times \mathrm{b} 2[\mathrm{Ra} 1] \quad 7 . \mathrm{Kb} 2 \times \mathrm{a} 1 \quad 20 . \mathrm{Kg} 4 \times \mathrm{g} 3$ 35.Kb2×c1[Sg1] 51.Kh2×g1 69.Kd1×e2[Rh1] 74.Kf5×e6[Sb1] 76.Kd7-c7 Sb1×c3 \%

HX-22: $1 . \mathrm{Kb} 4-\mathrm{b} 519 . \mathrm{Kb} 1 \times \mathrm{a} 2 \quad 38 . \mathrm{Kb} 5 \times \mathrm{a} 4[\mathrm{Sb} 1] \quad 56 . \mathrm{Kc} 1 \times \mathrm{b} 1$ $75 . \mathrm{Kb} 4 \times \mathrm{c} 3[\mathrm{Ra} 1] 82 . \mathrm{Kc} 7 \times \mathrm{d} 7[\mathrm{Pd} 2] 83 . \mathrm{Kc7}-\mathrm{c} 8 \mathrm{Ra} 1 \times \mathrm{h} 1 \%$

HX-23

Branko Koludrović
Problemkiste 2001

ser-h\% 94 C+ (11+2) Circe
HX-23: 1.Kh2-h3 11.Kc7×c6[Pc2] 29.Kb1×a2 49.Kb5 $\times \mathrm{a} 4[\mathrm{Sb} 1]$ $68 . \mathrm{Kc} 1 \times \mathrm{b} 188 . \mathrm{Kb} 4 \times \mathrm{c} 3[\mathrm{Ra} 1] 89 . \mathrm{Kc} 3 \times \mathrm{c} 4[\mathrm{Sb} 1] 90 . \mathrm{Kc4} \times \mathrm{d} 4[\mathrm{Pd} 2]$ 92.Ke5×f6[Pf2] 93.Kf6-g7 94.g5-g4+Kf3×g4 \%

HX-24: 1.Kc1-d1 $16 . \mathrm{Kc} 7 \times \mathrm{c} 6[\mathrm{Pc} 2] 34 . \mathrm{Kb} 1 \times \mathrm{a} 254 . \mathrm{Kb} 5 \times \mathrm{a} 4[\mathrm{Sb} 1]$ 73.Kc1×b1 93.Kb4×c3[Ra1] 94.Kc3×c4[Sb1] 95.Kc4×d4[Pd2] 97.Ke5×f6[Pf2] 98.Kf6-g7 99.g5-g4+Kf3×g4 \%

ARTICLES

If you ask me which of this series of capture records has the most potential for being increased, I would point to HX-26. It is the only Kemp mechanism in this category (besides my overall record!) and is only 5 moves longer than the task with 15 units. Quite a few ideas here, but no success yet...

A Kemp matrix amended for Circe is again used for the high numbers with the win-a-piece goal. Branko managed to extend his former 2006 record with 18 units by moving the white queen to a4!

'Orthodox' 15-18 units

HX-25
Miloš Tomašević
Radovan Tomašević
Mat 1992

ser-h×93 $\mathrm{C}+(13+2)$

HX-26
Miloš Tomašević
Radovan Tomašević
Mat 1992

$\operatorname{ser}-\mathrm{h} \times 98 \quad \mathrm{C}+(14+2)$

HX-25: 1.Kh8-g8 2.f7-f6 $14 . \mathrm{Kc} 2 \times \mathrm{d} 2 \quad 30 . \mathrm{Kh} 5 \times \mathrm{h} 4 \quad 48 . \mathrm{Ke} 2 \times \mathrm{f} 3$ 67.Kh4×h3 88.Kf4×f5 89.Kf5-e6 93.f3-f2 Qg1×f2 \times

HX-26: $\quad 1 . \mathrm{Kc} 8-\mathrm{d} 8 \quad 17 . \mathrm{Ka} 4 \times \mathrm{b} 5 \quad 35 . \mathrm{Kc} 8 \times \mathrm{b} 8 \quad 54 . \mathrm{Kb} 5 \times \mathrm{a} 6$ $74 . \mathrm{Kb} 8 \times \mathrm{a} 8 \quad 94 . \mathrm{Kb} 5 \times \mathrm{c} 6 \quad 95 . \mathrm{Kc} 6 \times \mathrm{d} 5 \quad 96 . \mathrm{Kd5}-\mathrm{c} 6 \quad 98 . \mathrm{d} 5-\mathrm{d} 4$ Qe3×d4×

HX-27
Miloš Tomašević
Radovan Tomašević
Mat 1992

$\operatorname{ser}-\mathrm{h} \times \quad \mathrm{C}+(15+2)$
107
HX-27: $1 . \mathrm{Ke} 2-\mathrm{d} 1 \quad 19 . \mathrm{Kd1} \times \mathrm{e} 1 \quad 38 . \mathrm{Kh} 5 \times \mathrm{h} 4 \quad 58 . \mathrm{Ke} 2 \times \mathrm{f} 3$ 79.Kh4×h3 102.Kf4×f5 103.Kf5-e5 107.f3-f2 Qg1×f2 \times

HX-28: $\quad 1 . \mathrm{Kg} 4-\mathrm{h} 5 \quad 13 . \mathrm{Kd} 8 \times \mathrm{e} 7 \quad 26 . \mathrm{Kd} 1 \times \mathrm{e} 1 \quad 45 . \mathrm{Kh} 5 \times \mathrm{h} 4$ 65.Ke2×f3 $86 . \mathrm{Kh} 4 \times \mathrm{h} 3 \quad 109 . \mathrm{Kf} 4 \times \mathrm{f} 5 \quad 110 . \mathrm{Kf5}-\mathrm{e} 5 \quad 114 . \mathrm{f} 3-\mathrm{f} 2$ Qg1×f2×

Circe 15 - 18 units

HX-29: $1 . \mathrm{Kc} 8-\mathrm{d} 8$ 10.Kh3 $\times \mathrm{h} 2[\mathrm{Bc} 1] \quad 21 . \mathrm{Kc} 7 \times \mathrm{c} 6[\mathrm{Pc} 2] \quad 37 . \mathrm{Kd} 1 \times \mathrm{c} 1$ 39.Kb1×a2 $59 . \mathrm{Kb} 5 \times \mathrm{a} 4[\mathrm{Sb} 1] \quad 78 . \mathrm{Kc} 1 \times \mathrm{b} 1 \quad 98 . \mathrm{Kb} 4 \times \mathrm{c} 3[\mathrm{Ra} 1]$ $99 . \mathrm{Kc} 3 \times \mathrm{c} 4[\mathrm{Sb} 1] \quad 100 . \mathrm{Kc} 4 \times \mathrm{d} 4[\mathrm{Pd} 2] \quad 102 . \mathrm{Ke} 5 \times \mathrm{f} 6[\mathrm{Pf} 2] \quad 103 . \mathrm{Kf6}-\mathrm{g} 7$ 104.g5-g4+ Kf3×g4 \%

HX-30: 1.Kh1-h2 9.Kf8×e8[Sb1] 25.Kb4×c5 43.Kd8×c8 62.Kc5×b6 82. $\mathrm{Kc} 8 \times \mathrm{b} 8102 . \mathrm{Kc} 5 \times \mathrm{d} 6[\mathrm{Pd} 2] \quad 110 . \mathrm{Kh} 4 \times \mathrm{g} 5[\mathrm{Pg} 2] \quad 111 . \mathrm{Kg} 5 \times \mathrm{f} 6[\mathrm{Pf} 2]$ 112.Kf6-e7 Qa1×e5 \%

HX-31

Branko Koludrović
Problemkiste 2006

$\operatorname{ser}-\mathrm{h} \% \quad \mathrm{C}+(15+3)$
118 Circe
HX-31: 1.Kb4-c3 14.Kf8×e8[Sb1] $30 . \mathrm{Kd} 4 \times \mathrm{c} 5 \quad 48 . \mathrm{Kd} 8 \times \mathrm{c} 8$ $67 . \mathrm{Kc} 5 \times \mathrm{b} 6 \quad 87 . \mathrm{Kc} 8 \times \mathrm{b} 8 \quad 107 . \mathrm{Kc} 5 \times \mathrm{d} 6[\mathrm{Pd} 2] \quad 115 . \mathrm{Kg} 6 \times \mathrm{g} 5[\mathrm{Pg} 2]$ 116.Kg5×f6[Pf2] 117.Kf6-e7 118.e5-e4 + Bd5×e4 \%

ARTICLES

Why is it so hard to achieve higher numbers in the help-capture realm with normal and with promoted force? Actually you have almost no possibilities to use any unit other than the black king for moving freely, as other black force would quickly be able to offer itself for capture. Thus pendulum manoeuvres have not yet been utilized here.

Both overall records of Branko with Circe rules are amazing. Have a close look at how he managed to keep the strong black force with promoted force under control, so that no earlier piece loss is possible!

Arno Tüngler Bishkek, April $8^{\text {th }}, 2016$

'Orthodox' Overall Records

HX-32

Arno Tüngler
StrateGems 2013

ser-h \times
116

HX-32: 1.Kc8-d8 19.Ka4×b5 39.Kc8×b8 $\quad 60 . \mathrm{Kb5} \times \mathrm{a} 6$ 82.Kb8×a8 104.Kb5×c6 105.Kc6×d5 115.Kg6-f6 116.Sg7×e6 Qe3×e6 \times

Cornel Pacurar

Arno Tüngler

HC69

ChessProblems.ca

17.02.2013

ser-h \times

126

HX-33: 1.Kf7-e7 10.Ka3×a2 23.Kh7×h6 $40 . \mathrm{Kd} 1 \times \mathrm{e} 1$
59.Kh5 \times h4 $79 . \mathrm{Ke} 2 \times \mathrm{f} 3$ 100.Kh4×h3 123.Ke4×f5 124.Kf5-e4
126.f5-f4 Bh $2 \times f 4 \times$

Circe Overall Records

HX-34
Branko Koludrović
Problemkiste 2006

HX-34: 1.Kf8-g8 12.Kd2×c3[Pc2] 25.Kf8×e8[Sb1] 41.Kd4×c5 $59 . \mathrm{Kd} 8 \times \mathrm{c} 8 \quad 78 . \mathrm{Kc} 5 \times \mathrm{b} 6 \quad 98 . \mathrm{Kc} 8 \times \mathrm{b} 8 \quad 118 . \mathrm{Kc} 5 \times \mathrm{d} 6[\mathrm{Pd} 2]$ $126 . \mathrm{Kg} 6 \times \mathrm{g} 5[\mathrm{Pg} 2] \quad 127 . \mathrm{Kg} 5 \times \mathrm{f6}[\mathrm{Pf} 2] 128 . \mathrm{Kf6} 6 \mathrm{e} 7 \quad 129 . \mathrm{e} 5-\mathrm{e} 4+$ Bd5×e4 \%

HX-35

Branko Koludrović
Problemkiste 2000

ser-h\% C $+(13+13)$
150 Circe
HX-35: 1.Ka4-a3 5.Kc1-d1 6.Ra5×a6 12.Ka4-a5 14.Ra4-a2 16.Ka4-a3 18.Ra4-b4 30.Kh6×g5 42.Ka4-a3 44.Ra4-a6 46.Ka4a5 48.Ra4-b4 58.Kg1×h2 59.Kh2×h1[Sb1] 65.Kc1×b1 69.Ka4a5 71.Ra4-a2 73.Ka4-a3 75.Ra4-b4 88.Kg5×h4[Sg1] 101.Ka4a3 103.Ra4-a6 105.Ka4-a5 107.Ra4-b4 116.Kf1×g1 125.Ka4a5 127.Ra4-a2 129.Ka4-a3 131.Ra4-b4 145.Kg4×f3[Rh1] 147.Kf4×e5[Pe2] 150.Ke7-f8 Rh1×a1 \%

ARTICLES
 A Puzzling Side Aside

by Adrian Storisteanu

"The art of simplicity is a puzzle of complexity." - Douglas Horton

ARTICLES

a suzgulile sloz aside

An aside aside

The Puzzling Side of Chess website: http://coakleychess.com/puzzlingside
triple loyd - place the bK on the board so that:
a) black is in checkmate,
b) black is in stalemate,
c) white has a mate in one.

See also "Triple is the charm", feenschach 202, August 2013, p. 250

It's good to see positions which aren't afraid to call themselves puzzles. It makes a refreshing break from the oh-so-serious concerns of the modern problemist. - Neal Turner, MatPlus.net forum, Feb. 2016

In this issue Jeff Coakley, from The Puzzling Side of Chess just down the road, is dropping by. (The occasion appears to be serious business, which in itself is a surprise.)

Jeff has just moved his collection of old and new puzzles to a new joint, after Chess Café went under (like many dot coms do). At the new establishment (one of the few places where I can still light up) you will find the same usually unusual and whimsical problems. The language overheard has its own charm - it is a world of maximizers, double whammies and multi-whams, additives and inverted loyds, and all sorts of goofs. You'll run into mazes, construction tasks, short PGs, shorter helpmates (in one), long retrograde analyses (in many), serials (anywhere in between), along with illustrative trivia bits and illustrations by Antoine Duff. It might get a bit noisy, but it is always fun.

Here is a smörgåsbord, light and with the occasional fairy spice, and prepared in the style of the house specialties.
Adrian Storisteanu
"I Walk the Line"

triple loyd

I keep the ends out for the tie that binds. The puzzle was inspired, at one point or another, by Johnny Cash's song.

$$
\text { a) } \mathrm{Kb} 3 \neq \text {; b) } \mathrm{Kd} 3=\text {; c) } \mathrm{Kf} 3: 1 . \mathrm{Rf} 4 \neq
$$

I find myself alone when each day is through. The keys for the three parts of the problem consist of the lone bK striding along the 3rd rank, each time closer to the wK (The Man in Black, walking the line).

Hmmтmmm. "Once while performing the song on his TV show, Cash told the audience, with a smile, 'People ask me why I always hum whenever I sing this song. It's to get my pitch.' The humming was necessary since the song required Cash to change keys several times while singing it." [en.wikipedia.org/wiki/I_Walk_The_Line] Being a triple loyd, this composition similarly changes keys between its three parts.

Adrian Storisteanu

add 吕 for $\neq 1$ vertical-mirror circe
b) $\mathrm{d} 5 \rightarrow \mathrm{a} 2$
a) add wRa1, wBa2 for $1 . \mathrm{Ba} 2 \mathrm{xd} 5(\mathrm{Sb} 8) \neq$; b) add wBh1, wRg2 for $1 . \operatorname{Rg} 2 \times \mathrm{a} 2(\mathrm{Sb} 8) \neq$. Reductivist remote reciprocal R B batteries in asymmetrical solutions.

ARTICLES

switcheroo \#1 - swap any two pieces, regardless of type and colour, for a legal position where white can checkmate in one.

See also "(-:", ChessProblems.ca Bulletin 5, April 2015, p. 138.
cyclotron - put the bK in checkmate by a cyclical swap of any three pieces: piece on a goes to square b, piece on b goes to square c, and piece on c goes to square a. The post-swaps position must be legal.

The puzzles are original for the Bulletin.

Adrian Storisteanu

add 8 Gs for a position with the lowest possible number of available moves
HINT: it is possible to place nine Cs on the board such that there are fewer than 40 moves available
b) now relocate one ? , such that the same number of available moves is maintained

> HINT: half the solution is given away by the stipulation
a) 38 moves - Ne1 + Na1, Na6, Nc2, Nc5, Nc7, Ne3, Ne6, $\mathrm{Ng} 2 ;$ b) ${ }_{\mathrm{z}} \mathrm{e} 1 \rightarrow \mathrm{~g} 7$. As vaguely suggested by the unhelpful hint, we must of course move that N already placed in the problem's diagram (Ne 1) - if we could relocate any other N , that would mean that there are two possible solutions to the first part. On e1, this N takes away 3 available moves from the other Ns and adds 4 of its own, whereas on $g 7$ it takes away 2 moves and adds 3 - for an equal net gain of one move in both cases.
These two are the only base positions (not counting the usual rotations and reflections, that is) for the fewest available moves with nine Ns.

Adrian Storisteanu

a) $h \neq 3 \quad$ b) cyclotron
a) $1 . \mathrm{Kc} 2!(\mathrm{Kc} 1 ?) \mathrm{Ke} 2$ 2.Kc1 Kd3 3.Kd1 rundlauf $\mathrm{Rf} 1 \neq$; b) cycle $\mathrm{Kd} 1 \rightarrow \mathrm{f} 1$, Kf1 $\rightarrow \mathrm{f} 3$, Rf3 $\rightarrow \mathrm{d} 1$. Echoes.

In March, Jeff posted his 100th Puzzling column. Cheers!

Adrian Storisteanu,
 Jeff Coakley

switcheroo $\neq 1$ *
b) after the key
a) Set mate: $\mathbf{1 . O}_{\neq \text {, set swap: }}$ Kel $\leftrightarrow R h 1 \neq$, solution: Rh1 \leftarrow Kal 1.0.O-0*;
b) Set mate: $1.0 .0-0 \neq$, set swap: $\operatorname{Ral} \leftrightarrow K e 1 \neq$,

solution: Ra1 \leftrightarrow Kh1 1. . $_{\neq \text {. }}$

The wR is interchanged with the white K in the set-play swap (a simple-switcheroo solution), and with the black K in the actual solution.

Perpetuum mobile. An extended variation on the ol' set play - a "set swap" is available on top of the traditional "set mate". One of the first compositions with the expanded switcheroo $\neq 1$ concept (Switcheroo 2.0) from the Wells Street Session of Spring 2015.

Adrian Storisteanu
Toronto, April 2016

LAST PAGE

Miervaldis (Walter) Jurševskis

Miervaldis (Walter) Jurševskis - born November 6, 1921 in Riga, Latvia, died March 15, 2014 in Burnaby, British Columbia, Canada.
He fled Riga in 1945, just prior to the Soviet forces arriving. In 1948 Jurševskis emigrated to Canada where he eventually settled in Vancouver, where he became a display artist for the T Eaton Company. He won the British Columbia Championships six times (1949, 1950, 1954-57), was a Chess Master, and an avid player of 5 minute blitz games.

ISSN 2292-8324

ChessProblems.ca Bulletin | Issue 8 |
| :--- |

Walter Jursevskis playing chess - verso. Photo from the Vancouver Sun (January 13, 1959) and classified under Latvian. Credit: Canada. Dept. of Manpower and Immigration / Library and Archives Canada (MIKAN no. 4369734)

[^0]: Hashashin
 [wikia]

